Evaluation of Condensation Heat Transfer Correlations for Microfin Tubes

  • Published : 2007.12.30


The feature of six existing condensation heat transfer correlations for microfin tubes were evaluated with the consideration of vapor quality, mass flux, geometries, and various refrigerants. The Kosky and Staub [15] and the Jaster and Kosky [16] correlations for smooth tube were used for the evaluation of the heat transfer enhancement factor (EF). For the prediction of zeotropic mixtures, most correlations show discrepancy with previous measurements. The Yu and Koyama [4] and the Shikazono et al. [8] correlations do not consider spiral angle effect. The Han and Lee [10] correlation shows fin height growth deteriorates heat transfer. Experimental verification to develop reliable condensation heat transfer correlation for microfin tubes is still needed with the consideration of geometrical effects and working conditions.



  1. Cavallini, A., Del Col, D., Doretti, L., Longo G. A. and Rossetto L., 2000, Heat transfer and pressure drop during condensation of refrigerants inside horizontal enhanced tubes, Int. J. of Refrig., Vol. 23, pp 4-25 https://doi.org/10.1016/S0140-7007(99)00032-8
  2. Wang, H. S. and Honda, H., 2003, Condensation of refrigerants in horizontal microfin tubes: comparison of prediction methods for heat transfer, Int. J. Refrig., Vol. 26, pp. 452-460 https://doi.org/10.1016/S0140-7007(02)00158-5
  3. Cavallini, A. and Zecchin, R. 1974, A dimensionless correlation for the heat transfer in forced convective condensation, 5th Int. Heat Transfer conference, Vol. 3,pp. 309-313
  4. Yu, J. and Koyama, S., 1998, Condensation heat transfer of pure refrigerants in microfm tubes, proc. int. Refrig. Conf. at Purdue, pp. 325-330
  5. Haraguchi, H., Koyama, S., Fujii, T., 1994, Condensation of refrigerants HCFC22, HFC134a and HCFC123 in a horizontal smooth tube, JSME Trans., Vol. 60, pp. 2111-2116 https://doi.org/10.1299/kikaib.60.2111
  6. Smith, S. L., 1971, Void fraction in two-phase flow: A correlation based on equal velocity head model, Heat and Fluid flow, Vol. 1, pp. 22-39
  7. Kedzierski, M. A. and Gonclaves, J. M., 1999, Horizontal convective condensation of alternative refrigerants within a micro-fin tube, J. Enhanced Heat Transfer, Vol. 6, pp. 161-178 https://doi.org/10.1615/JEnhHeatTransf.v6.i2-4.90
  8. Shikazono, N., Itoh, M., Uchida, M. Fukushima, T. and Hatada, T., 1998, Predictive equation proposal for condensation heat transfer coefficient of pure refrigerants in horizontal microfin tubes, Trans. JSME, Vol. 64, pp. 196-203 https://doi.org/10.1299/kikaib.64.196
  9. Chamra, L. M., Mago, P. J., Tan, M., and Kung, C., 2005, Modeling of condensation heat transfer of pure refrigerants in micr0fin tubes, Int. J. of Heat and Mass Transfer, Vol. 48, pp. 1293-1302 https://doi.org/10.1016/j.ijheatmasstransfer.2004.10.005
  10. Han, D. and Lee, K. J., 2005, Experimental study on condensation heat transfer enhancement and pressure drop penalty factors in 4 microfin tubes, Int. J. of Heat and Mass Transfer, accepted
  11. Garcia-Valladares, O., 2003, Review of in0tube condensation heat transfer correlations for smooth and microfin tubes, Heat transfer engineering 24, no. 4, pp. 6-24 https://doi.org/10.1080/01457630304036
  12. Newell, T. A, and Shah, R. K., 2001, An assessment of refrigerant heat transfer, pressure drop, and void fraction effects in microfm tubes, Int. J. of HVAC and R Research, Vol. 7,no.2,pp.125-153 https://doi.org/10.1080/10789669.2001.10391267
  13. Oh, S., and Bergles, A, 2002, Visualization of the effects of spiral angle on the enhancement of intube flow boiling in microfin tubes, ASHRAE Trans., Vol. 108, Part 2, pp. 509-515
  14. Kosky, P. G. and Staub, F. W., 1971, Local condensing heat transfer coefficients in the annular flow regime, AlChE J. Vol. 17
  15. Jaster, H., and Kosky, P. G., 1976, Condensation heat transfer in a mixed flow regime, Int. J. of Heat and Mass Transfer, vol. 19, pp. 95-99 https://doi.org/10.1016/0017-9310(76)90014-4
  16. Cavallini, A, Censi, G., Del Col, D., Doretti, L., Longo, G. A, and Rossetoo, L., 2001, Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a, R125, R32, R410A, R236ea), Int. J. of Refrigeration, Vol. 24, pp. 73-87 https://doi.org/10.1016/S0140-7007(00)00070-0
  17. Censi, G., Doretti, L., Rossetto, L, and Zilio, C., 2003, Flow pattern visualization during condensation of R134a inside horizontal microfin and smooth tubes, Int. Congress of Refrigeration, Washington, D.C., USA
  18. Eckels, S. J., and Tesene, B. A, 1999, A comparison of R-22, R-134a, R-410a, and R-407c condensation performance in smooth and enhanced tubes: Part I, Heat Transfer, ASHRAE Trans., Vol. 105, pp. 442-452
  19. Jung, D., Cho, Y., and Park, K., 2004, Flow condensation heat transfer coefficients of R22, R134a, R407C, and R410A inside plain and micro-fin tubes, Int. J. of Refrigeration, Vol. 27, pp. 25-32 https://doi.org/10.1016/S0140-7007(03)00122-1
  20. Silver, L., 1947, Gas cooling with aqueous condensation, Trans. Int. Chem. Eng. Vol. 25, pp. 30-42
  21. Bell, K. J. and Ghaly, M. A, 1973, An approximate generalized design method for multicomponent/partial condenser, AlChE., Symp. Ser., Vol. 69. pp. 72-79