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ABSTRACT

Although many studies have focused on the biological and toxicological effects of phenol products, in particular,
in reproductive tracts, the data about their effects in this estrogenic responsive tissue are much less clear. In addition,
the in vitro and in vivo data concerning ED-adverse impacts in other endocrine organs, i.e. pituitary gland, are not
understood well either. Thus, a further study is needed for providing a new insight into possible impacts of estrogenic
EDs including phenol products in humans and wildlife. A combination of in vitro and in vivo system for examining
EDs may bring better understanding into the regulatory mechanisms underlying EDs-induced events. In addition, this
information may support for developing optimal screening methods of estrogenic EDs, in particular, phenol products.
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INTRODUCTION

It has been reported that a number of environmental chemi-
cals, both synthetic and naturally occurring, can alter functio-
nally the endocrine system(s) of humans and wildlife. While
some of these chemicals may bind to the receptors of hor-
mones, mimic or block the action of these hormones and others
may stimulate or inhibit various enzymes that play essential
roles in the synthesis of a hormone (Dang et al, 2007a, b,
¢, d). The potential consequences of these actions may cause
abnormal hormone regulation and gene expression, thus affec-
ting adversely function(s) of reproductive, immunological and
neurological system (Waring and Harris, 2005). It has been
suggested that EDs, even at very low concentrations, can cause
their harmful effects via a complex series of molecular events
in which the interaction of these chemicals with hormone
receptor system may be important in the ED-responses. In
addition, it has been reported that the classical mode of action
of EDs, including estrogen-, androgen- or progesterone-like
compounds, are mediated via their high affinity receptors. Also
these receptors are necessary to induce and/or modulate an

ED-response. Recent studies indicated that non-genomic path-

endocrine disruptors, estrogenicity, cDNA microarray, uterotrophic)

way may also contribute to the potency of EDs to disrupt func-
tionally endocrine system(s) (Watson et al., 2007). These en-
vironmental compounds can exert their effects by altering the
synthesis or availability of endogenous hormones (Waring and
Harris 2005). E2 and xenoestrogens may induce rapid extrace-
llular signal-regulated protein kinase (ERK) phosphorylations
via non-genomic responses (Bulayeva et al., 2004), suggesting
that EDs may possess the potential to induce a non-genomic
response. Some of EDs referred to be weak estrogenic activity,
but they appear to be potent via non-genomic responses (Wat-
son et al, 2007). However, the mechanisms via which EDs
may exert their biological and toxicological effects in body
remain unclear.

It has been demonstrated that estrogen refers to be an im-
portant factor in the control of many physiological processes
and development of various organs in vivo including reproduc-
tive tract (Charpentier ef af/, 2000). In addition, estrogen also
plays an essential role in bone, liver and cardiovascular sys-
tems (Watanabe er al, 2003). However, a variety of environ-
mental contaminants possess hormonal properties, including
estrogen-like activities, so called xenoestrogens. The estrogenic
EDs, diethylstilbestrol (DES), phthalate acid ester, alkylphe-
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nols (APs), polychlorinated biphenyls (PCBs), phytoestrogens,
and methothoxychlor are rapidly metabolized in vivo (Elsby et
al, 2001a, b). It has been documented that phthalates, some
PCBs, DDT and its derivatives, certain insecticides and herbi-
cides such as Kepone and methoxychlor, plastic components
such as bis-phenol A (BPA), and components of detergents and
their biodegradation products, such as alkylphenols, can bind
to estrogen receptors (ERs) to induce or modulate an ER-me-
diated response (Choi and Lee 2004; Laws et al, 2000; Gray
et al., 1997; Roy et al, 1997). Some of them can easily pass
through maternal-placental barrier during pregnancy and cause
adverse effects in normal function(s) of neonatal reproductive
system, including octyl-phenol (OP), nonyl-phenol (NP) and
BPA (Hong et al, 2003, 2004a, b, 2005). It has been demon-
strated that alky phenols are branched typically octyl-, nonyl-,
or dodecyl- chains, forming a variety of isomers mostly in the
para-position of a phenolic ring (Dang er al., 2007a; Hong et
al., 2004a). In addition, alkyl-phenols have been demonstrated
rapid conjugation and excretion in the rodent, particularly in
oral route (Upmeier ef al, 1999; Certa et al, 1996). In vitro
and in vivo experiments indicate that these estrogenic EDs are
considered to be a weak estrogenic agonist (Bolger er al,
1998; Soto er al, 1995). The potency of OP or NP is about
107 to 107" M relative to E2 (Watanabe e al., 2004; Nagel
et al, 1997; Arold et al, 1996, White et al, 1994). OP and
NP were demonstrated to be equally potent EDs with greater
activity than BPA (Laws et al, 2000). In anterior pituitary
GH3 cells, the potency of BPA is 1,000 to 5,000-fold lower
than that of E2 in the induction of prolactin gene expression,
release and cell proliferation (Steinmetz et al., 1997). This ED
is structurally similar to DES, a synthetic chemical with high
potent estrogenicity. However, the mechanism underlying BPA-
induced estrogenic activity remains unclear (Dang et al., 2007b;
Papaconstantinou ef al., 2001).

Many of experimental research, including in vivo and in
vitro studies, have been developed to elucidate the biological
and toxicological effects of estrogenic EDs in humans and
animals. /n vitro methods include ER-binding assay, Michigan
Cancer Foundation (MCF) cell proliferation assay, and the
yeast-estrogen-screen cell assay (Miller et al., 2000; Seifert et
al., 1988). In vivo methods include an uterotrophic biocassay in
ovariectomized (OVX) adult and immature female rodents, age
at vaginal opening in prepubertal rats, vaginal cytology in adult
OVX female rats, and estrous cyclicity in intact rats (Balaguer
et al., 1999; Gray et al, 1997). The biomarkers to assess EDs,

i.e., pS2, Muncinl (MUCI1), androgen receptor, progesterone
receptor (PR), ER, clusterin, complement C3, lactoferrin, vitel-
logenin, and cathepsin B, have been developed for examining
the interactions of EDs and hormone system in humans and
animals (Ren et al, 1997; Heppell et al, 1995). Recently, a
genome-wide analysis technique, DNA microarray technology,
has been developed to screen EDs, which facilitates the rapid
monitoring of a large number of gene alterations and its suc-
cessful application for screening EDs in our previous study
(Dang et al., 2007a).

In this review, we described the in vitro and in vivo results
from three screening systems for estrogenicity of phenol pro-
ducts reported by us and others. Furthermore, the information
concerning with biological and toxicological effects of EDs or
xenoestrogens is very important for elucidating the mode of
actions of EDs in vitro and in vivo and strategy of ED- scree-

ning methods.

UTEROTROPHIC STUDIES

Many previous studies investigated the biological and toxi-
cological effects of OP, NP and BPA on female reproductive
system using in vivo model. The uteri of rodents undergo three
important stages during the postnatal development. Among these
stages, the quiescent period (postnatal day 17 to 26) refers to
be a critical window stage of sensitivity for uterotrophic bio-
assay (Owens and Ashby, 2002). Exposure to EDs during cer-
tain developmental stages of female reproductive system is
critical step to assess the potential effects of EDs. Based on
an increase in uterine weight in immature rodents after treat-
ment with environmental chemicals, an uterotrophic bioassay
is considered to be a reliable method in vivo for screening
estrogenic agonists and antagonists (Dang et al., 2007¢; Owens
and Ashby, 2002). It has been indicated that that the meta-
bolism of phenol products may be affected by exposure route
in the induction of uterotrophic responses (Laws et al, 2000).
While NP was reported to be more potent in increase of uterus
weight by oral route, subcutaneous exposure to OP and BPA
caused the highest response in uterine weight compared to oral
treatment (Laws ef al., 2000; Gray and Ostby, 1998). The pre-
vious evidence suggested that oral administration of OP and
NP to immature rats resulted in a significant increase in uterus
weight (Laws er al, 2000; Odum et al, 1997). A positive
uterotrophic response following OP, NP and/or BPA exposure
was previously reported in which OP, NP and/or BPA induced
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an elevation in rat uterine weight at 24 h after 3 day treatment
(An et al, 2002). The similar results also were observed after
a single injection with these compounds (Dang et al., 2007b),
suggesting that uterotrophic bioassay is an excellent indicator
for estrogenicity of EDs in both single and/or multi-exposures
within 24 h. Moreover, co-treatment with an ER antagonist,
ICI 182,780, prevented completely the ED-induced uterine weight
gain in this model. It has been shown that the action of E2
is, especially involved in estrogen-responsive tissues (Owens
and Ashby, 2002). The effect of BPA in rodent uterus has been
demonstrated in which an induction in hypertrophy of the lu-
minal epithelium, stroma and myometrium following BPA ex-
posure is noted (Papaconstantinou et al, 2001). In immature
mice, BPA may cause a modest uterotrophic response under
specific testing conditions (Tinwell et al, 2000). The growth
of uterus evoked by this ED was completely inhibited by
co-treatment with ICI 182,780, suggesting the physiological
involvement of ERs in uterotrophic response to BPA (Dang ef
al., 2007b). Although the potential of BPA refers to be much
lower than that of E2, a higher dose of ICI 182,780 is required
to prevent BPA-induced effects on uterine epithelium (Papa-
constantinou et al, 2001).

The uterus of rodents refers to be ideal organ for bioassay
to detect estrogenicity. However, the term of false negative or
false positive in uterotrophic bioassay is also mentioned in
which very weak agonists may generate a false negative, whereas
a false positive may occur in the case of negative chemicals
as described previously (Owens and Ashby, 2002). In addition,
certain substances which are well-known as non-estrogens may
cause a positive uterotrophic response (Nelson ef al, 1991;
Gardner et al, 1989; Mukku and Stancel, 1985; Jones and
Edgren, 1973; Velardo, 1959). It has been reported that the
physiological effects of estrogen action on target tissues may
induce changes in expression patterns of specific target genes
(Dang et al., 2007b; Kos ef al., 2000). The appearance of mo-
lecular and biochemical events linked with increased uterine
weight was previously demonstrated in which the mode of
estrogenic ED-action in the rodent uterus would be initiated by
the transcription of the ER-mediated genes (Bolger et al,, 1998;
Gould et al., 1998; Danzo, 1997; Gaido et al., 1997; Bulger et
al, 1978), and then resulted in uterine growth (Owens and
Ashby 2002). In order to understand the relationship of mo-
lecular and cellular events with uterotrophic response, an in-
duced biomarker system and/or a genome-wide analysis (Na-
ciff et al, 2002; Watanabe ef al., 2002) are required to pro-

vide new insight into molecular and biochemical mechanism(s)
in the uterus in response to estrogenic EDs. In addition, an
ideal assay for assessing the potential estrogenicity of EDs would
be an accurate-, cost- and time-effective. Thus, a combination
of uterotrophic bioassay and induced biomarker or gene array
is very required to determine whether an environmental chemi-

cal is ED or not.

INDUCED BIOMARKER SYSTEM

Recently, induced biomarker system was widely used to
assess and characterize an estrogenicity of EDs, in particular,
at low dose exposures. Patterns of potency in ED panels deter-
mined using assays of biomarker induction in response to ED
exposure may provide insights into understanding the mode of
ED-induced action. The linkage of cell division biomarkers
and uterine growth has been described in previous studies
(Kirkland er al., 1979; Gorski et al., 1977, Clark, 1971; Galand
et al, 1971; Ham et al, 1970; Martin and Finn, 1970). Based
on the interaction between EDs and specific target genes,
induced biomarker activity is a very sensitive and powerful
tool to identify estrogenic compounds in the environment (Choi
and Jeung, 2003). These marker genes include pS2, MUCI,
androgen receptor, progesterone receptor, ER, clusterin, com-
plement C3, lactoferrin, vitellogenin, cathepsin B (Ren et al.,
1997; Heppell et al., 1995) and CaBP-9k (Dang et al, 2007b,
¢, d; Choi and Jeung 2003; An ef al, 2003; An ef al, 2002).
Among them, Calbindin-D9k (CaBP-9k) has been shown to be
a useful biomarker for screening EDs or xenoestrogens in-
cluding phenol products.

CaBP-9k, a cytosolic protein, is a member of the family of
vitamin D-dependent calcium-binding proteins with high af-
finity for calcium (Christakos ef al., 1989; Kumar ef al,, 1989).
It has been reported that CaBP-9k gene is localized on the X
chromosome and consists of three exons and carries four Alu
repeats (Jeung ef al, 1994; Jeung et al, 1992). It has been
demonstrated that CaBP-9k is primarily expressed in the
intestine, kidney, uterus, bone (Armbrecht et al, 1989; Ma-
thieu er al, 1989; Secifert et al, 1988; Delorme et al, 1983),
lung (Dupret et al., 1992) and pituitary gland (Nguyen et al,,
2005). Functionally, CaBP-9k is involved in intestinal calcium
absorption and regulated at the transcriptional and post-tran-
scriptional levels by 1,25-dihydroxyvitamin D3, the hormonal
form of vitamin D (Darwish and DeLuca, 1992; Wasserman
and Fullmer, 1989; Roche ef al, 1986). Since the hormonal
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mechanism of CaBP-9k by E2 is well understood in rats (Kri-
singer et al, 1992), CaBP-9%k mRNA and protein levels in-
duced by EDs are considered to be a very useful tool for scree-
ning environmental estrogenic compounds in the immature rat
model (Choi and Jeung, 2003). In the previous study, we also
demonstrated that a single injection with OP, NP and BPA
resulted in an increase in uterine weight and the induction of
uterine CaBP-9%k mRNA and protein in immature rats and the
biological pathway of these actions may involve the ER and
ER-mediated pathway in vivo (Dang et al, 2007b). In addi-
tion, utero exposure to these compounds resulted in an signi-
ficant increase in CaBP-9k protein expression as previously
shown (An et al, 2003). In addition, a positive correlation
between uterotrophic assay and CaBP-9k mRNA or protein
expression was observed following OP, NP or BPA treatment
in the uterus of immature rats. Although placenta refers to be
a physiological barrier, which may protect the fetus from some
harmful substances, a variety of environmental chemicals inclu-
ding phenol products may cross this barrier and exert their
adverse effects on fetal health (Hong er al,, 2003, 2004a, 2005).
The previous studies reported that maternal exposure to OP,
NP or BPA resulted in an increase of CaBP-9%k mRNA and
protein in maternal and fetal uterus, suggesting that this che-
mical group can easily pass through the placenta during the
pregnancy (Dang et al., 2007a, b, d). Moreover, a transfer of
OP, NP and BPA from mother to pups via breast milk also
was detected in which a high expression level of CaBP-9k
mRNA was observed in neonatal uterus when the dams were
exposed to these compounds (Hong et al, 2004b).

It has been suggested that the estrogenic mode of ED-in-
duced action is mediated ER and ER-mediated pathway. The
ER is known well as a member of the steroid receptor family,
which includes estrogen, androgen, progesterone, glucocorti-
coid and mineralocorticoid receptors (Thornton, 2001; Baker,
1997; Escriva ef al., 1997; Laudet, 1997; Mangelsdorf et al,
1995). In the previous study, we demonstrated that the estro-
genic effects of OP, NP and BPA in the induction of uterine
CaBP-9k expression were completely attenuated by co-treat-
ment with an antiestrogen, ICI 182,780, suggesting that phenol
products exert their effects via an ER-mediated pathway in
vivo. In the uterus, two forms of ER have been identified as
ER @and ER . Although both receptors share some functional
characteristics, district molecular mechanisms control their genes
(Frasor et al, 2003). Additionally, the distribution of these
ERs also differs in this estrogenic target tissue (Williams et

al., 2001; Kuiper ef al., 1996). In the anterior lobe of pituitary
gland, the expression level of ER @ is higher than ER 8 (Kui-
per et al, 1997). A previous study in immature rats described
that uterine CaBP-9k is evoked by EDs via ER ¢ pathway, but
not ER B-mediated mechanism (Lee et al, 2005), indicating
that ER @ is a predominant form in the uterus.

In order to contribute to understanding of the relationship
between the molecular events caused by EDs and its biological
effects, in vitro models to employ rat pituitary cells, a GH3
cell model have been developed, and the estrogen responsive-
ness of GH3 cells has been demonstrated by Fujimoto (Fu-
jimoto et al., 2004). A marked up-regulation of CaBP-9 gene
following E2 treatment indicated that GH3 line is good candi-
date for investigating the estrogenicity of EDs. Recently these
cells have been selected to study the biological effects of
phenol group in the induction of CaBP-9k as a biomarker (Dang
et al, 2007d). Treatment with OP, NP and BPA induced a
significant increase in CaBP-9k at both transcriptional and
translational levels at 24 h. A significant increase in CaBP-9k
mRNA expression was detected as early as 6 h after OP, NP
and BPA exposure, whereas these chemicals caused a high
level of CaBP-9k protein expression at 1 h in these cells.
Taken together, these results indicated that a combination of
uterotrophic bioassay and induced biomarker system is very
critical to elucidate the biological ad toxicological effects of
estrogenic EDs, in particular, phenol groups. In addition, a
combined assessment of uterotrophic response and one or set
of induced biomarkers may provide valuable information in-
volved in estrogenic endocrine disrupting activities of EDs or

xenoestrogens.

GENOME—-WIDE ANALYSIS

A variety of screening methods have been developed to in-
vestigate EDs. An induced biomarker system has been used
widely to screening EDs, but this assay can detect only one
of many potential hormonal responses. Data from one or a set
of biomarkers fail to accurately reflect whole organism res-
ponses to EDs (Dang et al., 2007a). Recently, cDNA microar-
ray has been successfully -applied for the characterization of
EDs. A genome-wide analysis may monitor a large number of
gene alterations and provide better insight into the regulatory
mechanisms underlying EDs-induced events (Francois et al,
2003). In addition, the information from cDNA microarray

may complement perfectly the result obtained from the utero-
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trophic bioassay (Owens and Ashby, 2002). Estrogenic EDs
can bind to ER, and induce or modulate an ER-mediated phy-
siological response involving a complex series of molecular
events that may lead to changes in gene expression patterns
(Laws et al, 2000; Gray et al, 1997; Korach ef al, 1991).
The identification of estrogen-induced genes is a necessary
step to elucidate mechanisms underlying biological and toxico-
logical effects of EDs (Watanabe er al, 2003). The studies
which assess altered gene expression profiles evoked by OP,
NP or BPA have been previously carried out in estrogen target
tissues. A genuine response to estrogen or estrogenic EDs can
be observed while the female reproductive tract is still under-
going development (Dang e al, 2007a; Naciff et al, 2002).
A recent study in the uterus of immature rats pointed out that
district altered gene expression patterns following treatment with
E2 and/phenol products were noted in which elevated expres-
sion level of the genes (over 2-fold) were detected as 8.81 %
for OP, 9.51 % for NP and 8.26 % for BPA. These include
CaBP-9k, oxytocin, adipocyte completement related protein,
lactate dehydrogenase A and calcium biding protein A6 (Hong
et al, 2006). The similar gene expression patterns were ab-
served following E2 and NP treatment in the uterus. In ad-
dition, an agreement of gene expression profiles was observed
and obtained from uterotrophic bioassay caused by NP. How-
ever, the relative activity of this ED from gene expression
levels is about 10~ to 10~ when compared to E2 (Watanabe
et al., 2004).

Estrogenic EDs induce an identifiable transcript profiles.
These gene expression changes may reflect the molecular and
biochemical mechanism underlying its action in target tissues
at different stages of developing reproductive system. In pre-
gnant rats, a relative potency of OP and NP is similar and
higher than BPA (Hong er al, 2006). Maternal exposure to
phenol products may cause temporal changes in gene expression
in the uterus of dams and neonates. Treatment with high dose
of OP (600 mg/kg body weight per day) during late stage of
pregnancy may cause alterations in gene expression in both
maternal and neonatal compartments. However, the magnitudes
of these alterations differed markedly between dams and neo-
nates, reflecting the temporal susceptibility of reproductive tract
to EDs (Dang et al, 2007a) in which some estrogen respon-
sive genes i.e. complement C3, c-fos or CaBP-9k (also called
calbindin 3) expressed markedly in the uterus of neonates. It
has been demonstrated that complement C3 refers to be well-

known estrogen responsive gene in the uterus of rats (Jefferson

‘et al., 2000; Hasty and Lyttle, 1992; Sundstrom et al, 1989)

and consequently this gene is used as a common biomarker to
screen estrogenic ED-activity (Strunck et al, 2000; Hopert et
al, 1998; Bigsby and Young, 1994; Leiva ef al, 1991; Brown
et al, 1990, Howe et al, 1990). C-fos oncogene plays an im-
portant role in cell proliferation and transformation (Angel and
Karin, 1991) and is known to be one of sex steroid hormone-
regulated genes (Nephew et al, 1995; Nephew et al, 1994).
An estrogenic in vitro and in vivo induction of cell prolifera-
tion is a critical stage in carcinogenesis of gynecologic tissues
(Bardin et al, 2004). In addition, the identification of tumor-
associated genes is very important for clarifying carcinogenic
effects evoked by EDs. Tumor associated genes have been up-
regulated i.e. TTF2, tumor protein D52 like 2, tumor protein
p33, Bel-2 or nucleostemin (Wang et al, 2005; Yang et al.,
2005; Dhar et al., 2003; Tsai and McKay, 2002; Charpentier
et al., 2000; Byme et al., 1996; Jensen et al, 1995; Wenger
et al., 1993) following maternal exposure to EDs (Dang et al,
2007a), suggesting that maternal exposure to estrogenic EDs
may play a part in the pathogenesis of estrogen-dependent
tumor progression. Another study using developing female re-
productive system indicated that BPA possesses a weak estro-
genic like actions, which also may cause altered gene expres-
sion profiles in both uterus and ovaries of rat fetuses (Naciff
et al, 2002). These findings may provide useful information
on the risks associated with estrogenic ED exposure and the

prediction of ED-induced adverse effects in later of life.
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