R BAR
2007 128 1

An Experimental Comparison of Adaptive
Genetic Algorithms

YoungSu Yun®

—m Abstract &

In this paper, we develop an adaptive genetic algorithm (aGA). The aGA has an adaptive scheme which can auto-
matically determine the use of local search technique and adaptively regulate the rates of crossover and mutation
operations during its search process. For the adaptive scheme, the ratio of degree of dispersion resulting from the
various fitness values of the populations at continuous two generations is considered. For the local search technique,
an improved iterative hill climbing method is used and incorporated into genetic algorithm (GA) loop.

In order to demonstrate the efficiency of the aGA, i) a canonical GA without any adaptive scheme and i) several
conventional aGAs with varicus adaptive schemes are also presented. These algorithms, including the aGA, are tested
and analyzed each other using various test probiems. Numerical results by various measures of performance show
that the proposed aGA outperforms the conventional algorithms.

Keyword : Adaptive Genetic Algorithm, Adaptive Scheme, Local Search Technigue

1. Introduction gorithm (GA) have been developed. Especially,
various works that regulate genetic parameters

During past two decades, a lot of method- such as crossover rate, mutation rate, population
ologies to enhance the performance of genetic al- size, etc., have been performed by many re-

29 =EAMEEY 20074 103 05Y
k1

searchers [5, 6, 9, 10, 12, 20, 27,]. Most of the
works can adaptively regulate the rates of vari-
ous genetic parameters, and the logics used for
adapti{fe regulation usually consider a balance
between exploration and exploitation during ge-
netic search process.

Exﬁloration investigates new and unknown
areas 1n search space, while exploitation uses the
knowledge acquired by exploration to reach bet-
ter positions on search space. Therefore, how to
set genetic parameters can be the most important
factor in the determination of exploration versus
exploitation tradeoff. It has long been acknowl-
edged that these two properties have greatly in—
fluence on the performance of GA [9). If the poor
setting of genetic parameters is used, a correct
balance between exploration and exploitation in
GA search process can not be reached in a de-
sired way, which may lead GA search to pre-
mature convergence at a local optimum. There-
fore, the performance of GA is highly affected
by how to balance its exploration and exploi-
tation.

Designing a correct setting of genetic parame-
ters is not an easy task, since the interaction
among them has not been known completely.
Furthermore, the values of different genetic pa-
rameters may be necessary during genetic se—
arch process to keep a correct balance between
exploration and exploitation [10]. To overcome
this weakness of GA, various adaptive GAs
(aGAs) have been developed (2, 6, 7, 10, 22, 27].
Most of them adaptively regulate genetic param-
eters during the course of genetic search, and
their objectives are to set a correct balance be-
tween exploration and exploitation.

Especially, some idea for adaptively regulating
the rates of crossover and mutation operations

o2
N

in GA has been suggested in many studies [10,
12, 13, 16, 20, 24, 25]. These studies use various
heuristics or mathematical formulations, and the
genetic parameters controlled in each algorithm
are adaptively regulated during genetic search
process. Therefore, much time for fine-tuning
the parameters can be saved, and the search
ability of GA can be also improved in finding
global optimal solution. However, most of the
adaptive schemes used in the conventional stud-
ies depend highly on the problem under consid-
eration, that is, different adaptive parameters are
required for different problems.

In this paper, therefore, we develop an efficient
algorithm, called the adaptive genetic algorithm
(aGA). The developed aGA has the adaptive
scheme which can automatically determine the
use of local search technique and adaptively reg-
ulates the rates of crossover and mutation oper-
ations during genetic search process. In Section
2, some concepts and logics for keeping a correct
balance between exploitation and exploration in
GA search are suggested. By the concepts and
logics, the aGA is developed in Section 3. To
prove the efficiency of the aGA, canonical GA
without any adaptive scheme and several con-
ventional aGAs with various adaptive schemes
taken from some previous works are also pre-
sented, and all the algorithms are then tested and
analyzed using various test problems in Section
4, Some conclusion and remarks are followed in

Section 5.

2. Exploitation and Explora-
tion in GA search

Keeping a correct balance between exploi-
tation and exploration in GA search has been

known as a very difficult task [6, 10, 20].

In GA search process, a regulation between

exploitation and exploration is usually de-
termined according to the behaviors of the in-
dividuals of GA population. As GA is converging,
the similarity among the individuals of GA pop-
ulation is increased and the variance of the fit-
ness values of the individuals is thus decreased.
If the GA search proceeds to the global optimal
solution, then it can get a reliable solution.
However, it may also reach to premature con-
vergence, if it gets stuck at a local optimal sol-
ution, which makes the improvement of solution
and the search to global optimal solution very
difficult.

A reliable way in GA search requires the abil-
ities that i) continuously keep good individuals
with high fitness values in order to guide the
convergence toward global optimal solution as
well as ii) suitably maintain the diversity of in-
dividuals in order to avoid premature con-
vergence toward local optimal solutions, which
is usually called as exploitation and exploration
trade-off. Therefore, both exploitation and ex-
ploration should be suitably controlled during
genetic search process to preserve good in-
dividuals and maintain their diversity, which
eventually enhances GA search ability to global
optimal solution.

By exploration, the diversity of individuals in
GA population is maintained, and its premature
convergence to local optimal solutions can be al-
so avoided. On the other hand, by exploitation,
a possibility of finding respective individuals for
GA population is increased, and the searching
ability to global optimal solution is enhanced.

Many studies have been performed for keeping

a correct balance between exploitation and ex-

ploration in GA search by adaptively regulating
the rates of crossover and mutation operations.
Srinivas and Patnaik [20] developed a scheme
that the rates of crossover and mutation oper-
ations are increased when GA population tends
fo get stuck at a local optimal solution and are
also decreased when the population is scattered
in the search space of GA, in order to maintain
the diversity of individuals and reinforce the
search to global optimal solution. Wu et al. [25]
suggested an improved scheme for reinforcing
the ability of the mutation operation used in
Srinivas and Patnaik [20]. The improved scheme
inserts an additional logic into the original muta-
tion scheme in order to prevent the deterioration
of the performance of GA.

Mak et al. [16] proposed a scheme to regulate
adaptively the rates of crossover and mutation
operations according to the performance of ge-
netic operators. It increases the occurrence rates
of crossover and mutation operations, if it con-
sistently produces better individuals from pre-
vious generation to current generation;, however,
it also reduces the occurrence rates, if it always
produces poorer individuals. Herrena and Lozano
[10] suggested that 1) the rate of crossover oper—
ation should be increased for enhancing the
search ability to global optimal solution, ii) the
more individuals with high fitness values should
be chosen for crossover operation to avoid pre-
mature convergence to local optimal solutions,
and iii) the rate of crossover operation must be
decreased for keeping respective individuals in
GA population. Yun and Moon [23] controlled the
rates of crossover and mutation operations to be
increased, if they consistently produce better off-
spring during continuous two generations of GA;

however, the rates are also decreased if they

consistently produce poorer offspring during the
generations. This scheme is based on the fact
that it encourages the well-performing operators
to produce much better offspring, while also re-
duces the generating chance for poorly perform-
ing operators to destroy the potential individuals,
during genetic search process.

The common characteristics of these studies
mentioned above are classified into two sit-
uations: GA is converging and not converging.
These two situations can be summarized in
[Figure 1] and [Figure 2]. If GA is converging
like [Figure 1}, then the rates of crossover and
mutation operations should be increased for both
preventing premature convergence and enhanc-
ing the search to global optimal solution. On the
other hand, if GA is not conversing like [Figure
2], then the rates of crossover and mutation op-
erations should be decreased to avoid the in-
troduction of new individuals with poor fitness
values and guide the search toward convergence.

Global optimum

Local optimnun
| Q
Local optimum /
. / \\
b, ~\J \\

/ e

/ h

-~

N

[Figure 1] The situation that GA is converging

Global optinmm

\ Local optimom

O,
Local optmlum / \
)

f% <

[Figure 2] The situation that GA is not converging

o2
N

However, there are some weaknesses in GA
search strategies for the above two situations.

For the situation of [Figure 1], as GA is con-
verging, the similarity among the individuals of
GA population becomes higher. Therefore, the
fitness values of the individuals are significantly
similar to each other, and the variety of the pop—
ulation is reduced, which definitely deteriorate
the performance of GA. Considering this sit-
uation, it may be difficult for GA search to avoid
premature convergence even though the rates of
crossover and mutation operations are increased,
since crossover and mutation operations using
the individuals with similar fitness values may
make the introduction of new individuals difficult
and also prevent GA from converging to global
optimal solution.

The technique that helps improving this wea—
kness of GA performance is to forbid the in-
troduction of an individual into the population
when too many similar individuals already exist
in it. One possible alternative is to insert new
individuals into current population. These new
individuals should not have the same similarity
as the current population and also keep a certain
high fitness values that are similar to that of the
population. The mutation operator in GA is an
example of such alternatives, but it usually gen-
erates undesired random outputs. Local search
technique which can explore around the con-
vergence area after GA search at each generation
is a possible alternative, since it is capable of
producing new individuals with a certain high
fitness value like the good individuals generated
by GA [5].

By this way, if we consider both the use of
a local search technique and the case of increas—
ing the rates of crossover and mutation oper-

ations when GA is converging, then the GA per-
formance by this combined strategy may be su-
perior to that by the latter alone. By local search
technique, the introduction of new individuals
with certain high fitness values will be con-
tinuous. By the increase of the rates of crossover
and mutation operations, GA search to global op-
timal solution can be reinforced.

In the situation of [Figure 2] that GA is not
conversing, it can be divided into two ways : one
is to consider the situation that the current fit-
ness value of GA is inferior to the previous fit-
ness ones during genetic search process, another
is that the fitness values of GA in continuous
generations do not show any change at all.

By the first situation, the introduction of the
inferior individuals in current generation will be
increased to the next generation, which definitely
deteriorates the performance of GA. To over-
come this weakness, the introduction of the new
individuals should be reduced in constructing
new population of the next generation. Decreas—
ing the rates of crossover and mutation oper—
ations is a good alternative for this purpose. By
decreasing the rates, the good individuals with
high fitness values in current generation are
kept, which can help the convergence of solution.

The second situation often occurs after GA
search has been significantly progressed. At that
time, any improvement or convergence of the
solution may not be occurred, even though the
introduction of new individuals to next gen-
eration is reduced by decreasing the rates of
crossover and mutation operations, which is
mainly because the fitness values of the in-
dividuals at that time are significantly similar to
each other. Therefore, a new technique for im-

proving this situation is required. A possible al-

A3y fAdaeEe AP via S

ternative is to insert the new individuals, result-
ing from the local search technique which is al-
ready explained when GA is converging, into
cwrrent population.

With the improved methods stated above, we
can reach the improved three situations as
shown in <Table 1>. To realize the three sit-
uations in <Table 1>, we use the degree of dis-
persion C(t)of the fitness values of population at

generation ¢ as follows :

Fax)= f (1)

= =@

D

where 7. (t) and f

m

.. (t) are the maximal and
minimal fitness values of the population, re-
spectively, and f(¢) is the average of all the fit-
ness values of the population, at generation t.

The C(t)in equation (1) can confirm the con-
vergence situation of solution in GA population

[10]. Using the equation (1), the ratio of degree

{Table 1) Improved three situations

Situation
1

If GA is converging, we increase the rates of
crossover and mutation operations and also
apply a local search technique to GA loop.

By this way, both the reservation of good indi-
viduals and the introduction of new individuals
can be simultaneously achieved.

Situation
2

If GA is not converging (the current fitness
value of GA is inferior to the previous fitness
value), we decrease the rates of crossover and
mutation operations.

By this way, the introduction of new indi-
viduals is reduced and the convergence of sol-
ution can be progressed.

Situation
3

If GA is not converging (the fitness values in
continuous generations of GA do not show any
change at all), we apply a local search tech-
nique to GA loop.

By this way, several new individuals, both not
having the similarity of the current population
and also keeping a certain high fitness value
that is similar to that of the population, are
generated and inserted into GA loop.

6 + 94
of dispersion (CR) of the fitness values in con- Condition pc pu Local Search
tinuous two generations can be formulated as technique
follow : y
g
@ CR <1 o
) < 1\ 1\
R= 775 (2) %
Generation
Using the CR in equation (2), the improved
three situations in <Table 1>, when mini-
mization is assumed, can be represented as \[/ \L B
shown in <Table 2>. Ck > 1
Generation
(Table 2> Three conditions
Conditions %’
Situation 1 CR<1 ‘%" CR =1
Situation 2 CR>1 §‘ - - O
Situation 3 CR =1 g
Generation

Using <Table 1> and <Table 2>, we can for—-
mulate the procedure to adaptively regulate a
balance between exploration and exploitation
during GA search. The procedure by using the
rate of crossover operation (p.), that of mutation
operation (p,) and local search technique is
shown in [Figure 3].

Procedure : Regulation of a balance between
exploitation and exploration
begin
if CR<1 then
pot+1) = pot) + 0.1;
put+1) = p,(¢) + 0.01;
apply local search technique to GA
loop;
if CR>1 then
pclt+1) = p(t) - O.1;
PM(H‘U = PM(t) ~ 0.01;
if CR=1 then
apply local search technique to
GA loop;
end
end

[Figure 3] Regulation of a Balance Between Ex-
ploitation and Exploration

[Figure 4] Regulation of pc, ow and local search
technique in GA search

[Figure 4] summarizes the procedure defined
in [Figure 3]. The detailed approaches using GA
and local search technique for implementing the
proposed procedure are presented in Section 3.

In [Figure 4] the arrow sighs 1 and | of the
pc and par mean that the rates of the crossover
and mutation operations are respectively in-
creasing and decreasing during genetic search
process. The circle sigh (O) of the local search
is to apply local search technique to GA loop.

3. Design of aGA

For designing the aGA, both GA and local
search technique are used. The former is to glob-
ally search the whole search space, while, the
latter is to locally search around the convergence
area in GA loop. By the mixed use. of two ap-

proaches, a balance between exploitation and ex-

ploration during the aGA search process can be
adaptively regulated. The detailed procedures for
implementing both the GA and local search ap-
proaches are shown in the following sub-
sections. '

3.1 GA Approach

For the representation of GA, we use a re-
al-number representation instead of a bit-string
one, since the former has several advantages of
(i) being better adapted to many optimization
problems, (ii) speeding up the search against
bit-string representation, and (ii) making the
development of the approaches easy for hybrid-
izing with conventional local search techniques
[3]. The GA is used as a main algorithm of the
proposed aGA. For the GA, the initial population
is made by random search. Three genetic oper-
ators of selection, crossover, and mutation use
the elitist strategy in enlarged sampling space
[8], uniform arithmetic crossover operator [17)
and uniform mutation operator [17], respectively.
The offspring resulting from crossover and mu-
tation should satisfy the constraints which are
used in each problem under consideration. If
some individuals of the offspring do not satisfy
the constraints, they are rejected in the selection
stage for the next generation. The detailed im-

plementation procedure is as follows:

Step 1: Initial population.
We use the population resulting from
random search within all feasible se-
arch spaces.

Step 2: Genetic operators.

Selection : elitist strategy in enlarged

sampling space [8].
Crossover : uniform arithmetic cross-
over operator [17].
Mutation : uniform mutation operator
[17].

Step 3: Fitness test.
Do fitness test using the offspring sat-
isfying constraints.

Step 4: Stop condition.
If a pre-defined maximum generation
number is reached or a global optimal
solution is located during genetic se—
arch process, then stop; otherwise, go
to Step 2.

3.2 Local Search Approach

Local search techniques usually use local in-
formation about the current set of data (state) -
to determine a promising direction for moving
some of the data set, which is in turn used to
form the next set of data. The advantage of local
search techniques is that they are simple and
computationally efficient. However, they are
easily entrapped in a local optimum. In contrast,
global search techniques such as GA explore the
global search space without using local in-
formation about promising search direction.
Consequently, they are less likely to be trapped
in local optima, but their computational cost is
higher.

Many researchers have reported that the hy—
brid approaches both with GA and local search
technique produces certain benefits [14, 15, 21].
The reason is that the hybrid approaches can
combine a merit of GA with that of local search
technique. That is, hybrid approaches are less
likely to be trapped in a local optimum than local

search technique. Due to local search technique,
hybrid approach often converges faster than the
~ GA does.

In our study, therefore, we use a method to hy-
bridize GA with local search technique. This ap-
proach seen in most of conventional hybrid GAs
is to incorporate local search technique into GA
loop [8, 21]. With this approach, local search
technique is applied to each newly generated off-
spring to move it to a local optimum before in-
jecting it into the new population.

For the proposed aGA, we use the iterative hill
climbing method suggested by Michalewicz [17]
and improve it. This method can guarantee the
desired properties of local search technique for
hybridization as explained above. The main dif-
ference between the conventional iterative hill
climbing method and the improved iterative hill
climbing method is that the latter selects an opti-
mal individual among the individuals satisfying
the constraints of the hybrid GA, while, the for-
mer selects a current individual at random, which
allows the latter to have various search abilities
and good solutions unmet by the former. The de-

Procedure: improved iterative hill climbing
method in GA loop
begin
Select an optimum individual v, in current
GA loops
Generate randomly as many individuals as
the population size in the neighborhood of
Ve
Select an individual v, with the optimal
value of the objective function f among
the individuals newly generated;
if f (vo) > f (vn) then
Ve € Vg
end

End

[Figure 51 Procedure of the improved iterative hill
climbing method »

o
4

tailed procedure of the improved iterative hill
climbing method, when minimization is assumed,
is shown in [Figure 5].

3.3 Implementing the GA

With the GA and local search approaches pro—
posed in Sections 3.1 and 3.2, we design the aGA.
The detailed procedure for its implermentation is

as follows :

Steps 1-3: apply the same steps 1, 2 and 3 as
the GA approach of Section 3.1.

Step 4 : Stop condition.
If a pre-defined maximum generation
number is reached or a global optimal
solution is located during genetic search
process, then stop all steps.

Step 5 Regulation of a balance between ex-
ploitation and exploration.
Calculate Cr using equations (1) and (2)
and then adapt the procedure of [Figure
3] Go to step 2.

4. Numerical Examples

In this Section, two test suits both with simple
search space and complex search space are used
to compare the performance of the developed
aGA. The result obtained by the aGA are ana-
lyzed and compared with other conventional
algorithms. The algorithms for experimental
comparison are taken from several conventional
works [16, 20, 22, 25]. Each algorithm is sum-
marized in <Table 3>.

In <Table 3>, the GA uses the same GA pro-
cedure with Section 3.1. The aGA-1 employed
the fitness values of parent and offspring at each

generation in order to construct an adaptive
scheme by regulating the rates of crossover and
mutation operations. The aGA-2 developed an
adaptive scheme using various fitness values at
each generation of GA, and the improved scheme
of the p,, used in the aGA-2 was applied to the
aGA-3. The last algorithm for comparison, the
aGA-FLC used a fuzzy logic controller (FLC),
and its main scheme is to use two FLCs
(crossover FLC and mutation FLC), which are
implemented independently to adaptively regu-
late the rates of crossover and mutation oper-
ations using the changes of average fitness in
GA population.

{Table 3) Conventional algorithms for experiment

comparison
Algorithm Feature
GA Canonical GA
B Adaptive regulation by heuristic
aGA-1 procedure[16]
. Adaptive regulation by heuristic
aGA2 condition[20]

Adaptive regulation by the impro-

aGA-3 ved scheme of the py used in
aGA-2(25]
. Adaptive regulation by fuzzy logic
aGA-FLC controller[22]

The above-stated algorithms (aGA-1, aGA-2,
aGA-3 and aGA-FLC) and the proposed aGA are
all controlling the rates of crossover and muta-
tion operations and also keeping a balance be-
tween exploitation and exploration during their
search processes.

For experimental comparison under a same
condition, the parameters of each algorithm are
set at population size: 20, crossover rate: (.5,
mutation rate : 0.05, maximum generation nym-
ber : 2,000. The neighborhood search range for

the improved iterative hill climbing method used
in local search is 1.0.

The “crossover rate” and “mutation rate” for
the GA loop are fixed at same values during its
search process. However, the rates for the con-
ventional four algorithms (aGA-1, aGA-2, aGA-3
and aGA-FLC) and our proposed aGA are adap-
tively regulated during their search processes,
respectively. Altogether 20 iterations are exe-
cuted to eliminate the randomness of the se-
arches. The procedures of all the algorithms are
implemented in Visual Basic language under
IBM-PC Pentium-863Mhz computer with 512
MByte RAM.

For comparing the performance between the
aGA and the other algorithms, various measures
are used in each test suit. The measures used
are shown in <Table 4>.

(Table 4> Measures of performance

Notation Description

BFV Best fitness value

AFV Average fitness value

NGS Total number of getting stuck at a
local optimum

CPU Average CPU times(Unit : Sec.)
TGN Total generation number

In <Table 4>, the BFV and AFV are obtained
after an algorithm reaches to a given stop con-
dition, respectively. The NGS means the total
number that an algorithm gets stuck at a local
optimum. The CPU and TGN imply the average
CPU time and the total number of generations,
when an algorithm reaches to a given stop con-
dition, respectively. Among the measures, the
NGS and TGN are only obtained when the global
optimal solution was already known, since, in the
test problem which the global optimal solution

10

was unknown, the NGS is not able to be obtained
and the TGN has no meaning.

4.1 Test suit]

Experiments on the test suit 1, summarized in
<Table 5>, have been carried out in order to
compare the performances of the conventional
algorithms and the proposed aGA.

(Table 5 Test suit 1 with global optimal solution

Test function Glols)al;)lu(;%t;ilmal
Rastrign function(fp,,) 0
Binary function(f,,,) 0
Rosenbrock function(fp,) 0
Reliability function(fy,,) 0

* (Global optimal solution was already known

The detailed descriptions on each algorithm of
test suit 1 are as follows:

® Rastrign functions (fg,,) [11]: this considers
a function with five continuous variables, its
global minimum was fg,,(z') =0 at =z, =z,
zy; =1, =z, =0, and all of the variables should
be considered as continuous values within the
range -5.12 to +5.12. The mathmetical for-
mulation is as follows:

5
Fras (B> Ty Tyy T) =15+ Y, (2 —3cos (27,)
=1

® Bindry function (f,,) [3): this is a multi-
model function of two continuous variables
and reaches its global maximum was f,, (")
= 1.0 at z, =z, =0. The search ranges of z,
and z, have the range -100.0 to +100.,

respectively. The expression is as follows :

Ho
o2
>

(sin \/xf +x§)2 —05

10+40.001(z2 +22)?

I Bin (’71’ xz) =05

e Rosenbrock function (fp,,) [4]: this is to min-

imize a function of two variables and has a
global minimum of f,,,(z") =0 at z, ==, =1.0,
and each of z, and z, have the continuous
values within the range -2.048 to +2.048. The
expression is as follows:

F o @1y) = 100(2? — 2,)2 + (1 -,)?

Reliability Optimization Problem (f,,) [18]
: this problem is an optimal redundancy allo—
cation problem with the 15 complex compo-
nent systems. The mathematical formulation
is as follows:

maximize fg,,(z)= ﬁ {1-(—r)}
i< 1

subject to g,y =Y, (c;+
g ()=)] (w; - z)) < 414

z]L < zjéx;/ s integer j=1,---,15

where r;, ¢, and w,; are coefficient and their

values are appeared ‘in [18].

The global optimum was known as z={346

5324542345 4 5] with the objective value
fre = 09456, g, (z) =392, and g, (z) = 414.

Using the four test functions described above,

we tested the proposed aGA and the conventional
algorithms (GA, aGA-1, aGA-2, aGA-3 and
aGA-FLC). The results obtained are summar-
ized in <Table 6> For each test function, the

analysis is as follows,

i) fRas
In terms of the BFV, the algorithms (GA,

(Table 6y Computational results for test suit 1

f Ras f Bin
BFV AFV NGS CPU TGN BFV AFV NGS CPU TGN
GA 0.0000 0.0025 18 50338 1836 1.0000 0.9566 15 2.2546 1,735
aGA-1 07417 4384 20 44079 2,000 1.0000 0.9566 15 237135 1,73%
aGA-2 0.0000 0.0009 16 3937 1812 1.0000 0.9623 18 2.9673 1,906
aGA-3 0.0000 0.0014 13 64178 1,78 1.0000 09737 14 2.9818 1,628
aGA-FLC 00276 01434 20 45201 2,000 0.9978 0.9628 20 19518 2,000
aGA 0.0000 0.0006 13 45020 1625 1.0000 09782 10 2.3033 1,359
f Ros f Rel
BFV AFV NGS CPU TGN BFV AFV NGS CPU TGN
GA 00000 0.0059 19 26133 1901 0.9228 0.8844 20 09.7535 2,000
aGA-1 00001 017% 20 25397 2,000 0.9240 0.8901 20 09.1447 2,000
aGA-2 0.0000 0.0106 17 25442 1738 09244 0.8920 20 10.2288 2,000
aGA-3 0.0000 0.0087 18 290112 1,827 0.9233 0.8900 20 (09.3555 2,000
aGA-FLC 00001 0.1281 20 2375 2,000 0.9339 0.8983 20 05.6521 2,000
aGA 0.0000 0.0001 12 23940 1571 0.9465 09445 16 10.6914 1,966

aGA-2, aGA-3 and aGA), except for the aGA-1
and aGA-FLC, located the global optimal sol-
ution, which means that the adaptive schemes
used in the aGA-1 and aGA-FLC do not well
control the rates of crossover and mutation
operations. The result of the BFV also affects
that of the AFV, that is, the aGA-1 shows the
worst performance.

The convergence ability to global optimal sol-
ution in each algorithm can be confirmed by the
comparison of the total number of getting stuck
at a local optimum. In terms of the NGS, the abil-
ities of the aGA-3 and aGA show the best
performance. However, the aGA-1 and aGA-
FLC do not show any convergence to the global
optimal solution at all, which means that the
adaptive schemes used in the aGA-3 and aGA
outperform those in the aGA-1 and aGA-FLC.

In terms of the CPU, since all the adaptive al-
gorithms have additional search schemes, they,
except for the aGA-3, have slightly faster run-
ning time than the GA. This means that their

adaptive schemes can guide their searches to the
global optimal solution with the lower rates of
crossover and mutation operations than those in
the GA.

Similar results such as the BFV and NGS are
also shown in terms of the TGN. The aGA-1 and
aGA-FLC are the slowest performers because
they always get stuck at a local optimum in all
trials, which is also proved in terms of the NGS.

i) fpn

All the algorithms, except for the aGA-FLC,
located the global optimal solution in terms of the
BFV. However, in the comparison of the AFV,
the aGA is the best performer even though all
the algorithms have same value in the BFV.

In the comparison of the NGS and TGN, the
performances of the aGA are significantly supe-
rior to the remainders, which imply that the
adaptive scheme used in the aGA is well control-
ling the rates of the crossover and mutation op-

erations rather than the other adaptive algo-

12 &

A
T

e N s,

rithms (GA-1, aGA-2, aGA-3 and aGA-FLC),
during the course of search. However, the
aGA-FLC, especially, shows the worst perform-
ance in terms of the BFV, NGS and TGN. This
can be analyzed that the FLC used for regulating
the rates of crossover and mutation operations
does not well control the rates.

i) £z,

In terms of the BFV, AFV, NGS and TGN, the
GA shows the better performances than aGA-1
and aGA-FLC, even though the latter have addi-
tional schemes to control the rates of crossover
and mutation operations. However, the aGA
shows the best performance in all the measures
of performance, except for the CPU.

The results of the NGS and TGN mean that
the aGA-1 and aGA-FLC do not control the
rates of crossover and mutation operations at all,
which guides the algorithms toward local optimal
solutions instead of the global optimal solution.
These results are very similar to those of the

fRas .

V) fra

This test function has more complicated in-
equality constraints than the fg,.., fz.and fg..
It means that locating the global optimal solution
in each algorithm become much more difficult
than those in the fg,., fgz,.and fg,,. Therefore,
all the algorithms, except for the aGA, failed to
locate the global optimal solution. This is proved
in terms of the NGS and TGN.

Based on all the comparisons of the <Table
6>, each algorithm shows various performances
according to the problem under consideration. It
means that an algorithm shows not only the best
performance in a test function, but also the worst

performance in other test functions. However,
the aGA developed in this paper shows consid-
erately better performances in most of the test
functions shown in <Table 6> than the other
competing algorithms. This means that the ad-
aptive scheme and the local search technique
used for regulating a balance between the ex-
ploitation and exploration in the aGA are well
guiding the search toward the global optimal

solution.

4.2 Test suit 2

For more various comparisons with the aGA,
the conventional GA and several aGAs, four
types of engineering optimization problems with-
out the global optimal solutions are used here.
These problems are taken from several conven-
tional works. <Table 7> summarizes their des-

criptions.

{Table 7> Test suit 2 without global optimal

solution

Test problem Glogillu%%n
Coil Compression Spring X"
Problem(f ;)
Pressure Vessel Problem(fp,.) X
Reinforced Concrete Beam %
Problem(f,.,)
Gear Train Problem(f,,,) X

* Global optimal solution has not been known

The detailed descriptions on each test problem
of test suit 2 are as follows:

e Coil compression problem (f,,,): this prob~
lem was applied by Wu and Chow [26], and
its mathematical formulation is as follows:

minimize fq,(z) =z, 23 (z, +2)/4

2
olo
ol
o
2
e
I
B
i
to
e
)
2
o)
13

13

subject to g, (x) ==, —0.0193z, =0

9,(2)=(8C F,,, z,/ma)—s<0 ' g, (z) =z, — 0.00954z, = 0

g@) =11, <0 g, ()= mz} z, +4/3mal — 750X 1782 = 0

g3(x)=dmm*:c3£0 g4(a:):fw4+24020

gle)=a,+2,—D,, <0 g (z)=2,-11=0

g5(x) = 3.0—(w,/zy) <0 g (2)=2,-06=0

gﬁ(x) = 6p~(5pm <0

9:(2) = 8, +(F,, —F)/ K+1.05(z, +2) x5~ 1, <0 The design variables of z, and =, are discrete

gylz) =0, +(F,, —F)K=<0 values with integer multipliers of 0.0625. 2, and
z, are continuous values, and their side con-

The parameters used above are as follows : straints are [40 inch, 80 inch] for =z, and [20 inch,
60 inch] for z,.

(SPZI';/K K= Gr;/8, x5

ly=F, [KE+105(z, +2)z, * Reinforced Concrete Beam Problem(fy,;):

F,.. = 1000 b. 5= 189,000 psi. Amir and Hasegawa [1] suggested the prob-

Ly = 14.04nch d, ., =0.2inch lem of designing reinforced concrete beam. Its

D, .. =3.0inch F, =300.0 ib. objective is to minimize the total cost of con-

8,,, =6.0inch 8, = 1.25 inch crete and reinforcing steel of the beam. The

G=11.5x10° psi. mathematical formulations is as follows:

G = (4(zy/zy) = 1)/ (4(zy /2;) —4) — 01652, /x,
minimize fg,;(z) =294z, +0.6z, z,

In this problem, the design variables are con- subject to
sidered as integer, continuous, and discrete g, (x) =z, &, — 773527 /2,— 180 = 0
variables. Especially, discrete variable uses the 9,(x) =~z /x,+4=20

pre—defined discrete dimensions [26].

In this problem, the design variables are con-

o Pressure Vessel Problem (fm.c)Z the pressure sidered as three types : integer, continuous and
vessel problem was designed by Wu and discrete variables: z, takes only certain pre-
Chow [26]. The objective function is to mini~ determined discrete values, z, and z, take any
mize the total cost for manufacturing the continuous values and integer values, respec-
pressure vessel. The mathematical for- tively [1].

mulation is as follows :

o Gear Train Problem (f,,)' the gear train

minimize problem was introduced by Sandgran [19]. It
Fore (£) =0.6224, Ty 2, + 1.7781 2, 2] is desired to produce a gear ratio as close as
3.1661z, z, + 19.84 z° x,, possible to 1/6.931. For each gear, the number

subject to of teeth must be between 14 and 40. Therefore,

14 'y

A
T

{Table 8> Computational results for test suit 2

f Coi f Pre
BFV AFV CPU BFV AFV CPU
GA 2.0860 22531 3.9627 72045116 7360.2061 21384
aGA-1 20039 23572 41730 72246625 7366.1740 2.3629
aGA-2 2.0835 2.2350 5.0037 7204.9645 7367.8261 3.0219
aGA-3 20832 22534 53341 72064193 7318.3094 31901
aGA-FLC 2.0824 2.1366 2.18% 72436187 73187232 14249
aGA 2.0823 21056 43102 72008763 7309.4399 22382
e S Gea
BFV AFV CPU BFV AFV CPU
GA 364.8682 366.1289 0.7611 6.602E-10 5.960E-08 057113
aGA-1 364.848 366.1251 0.8427 2.358E-09 4.327E-06 0.5673
aGA-2 364.8642 365.8674 08673 2.308E-11 2.7151E-08 1.0260
aGA-3 364.8643 366.2431 11241 2.308E-11 2.751E-08 1.1586
aGA-FLC 364.8648 3659753 08763 2.358E-09 2.493E-06 0.6225
aGA 364.8550 365.5486 09279 2701E-12 7.569E-08 0.8483

the design variables are the numbers of teeth
which must be integers. The mathematical

formulation is expressed as follows :

minimize fg,,(x)=(1/6.931-%, z, /z, z,)*

subject to 12<3, <60 i=1,2 34

Using the four types of test problems de-
scribed above, each algorithm in <Table 5> was
tested and the computational results are sum-
marized in <Table 8>. In <Table 8>, the NGS
and TGN are not appeared as the measures of
performance since they are only used on the as-
suming that the global optimal solutions of the
test problems have been known.

For each test functioh, the analysis is as
follows.

1) f Coi and f Pre
For the comparison using thef,,;, in terms of
the BFV, all the adaptive GAs (aGA-2, aGA-3,

aGA-FLC and aGA), except for aGA-1, show
slightly better performances than the GA. The
performance of the aGA, especially, is the best.
Similar result is also shown in terms of the AFV,
that is, the aGA is the best performer and the
aGA-1 is the worst performer, which means that
the adaptive scheme used in the aGA is more ef-
ficient in treating the rates of crossover and mu-
tation operations than that used in the aGA-1.
On the other hand, in terms of the CPU, The
aGA-2 and aGA-3 is the slowest, while the
aGA-FLC is the quickest.

Similar analysis results are also shown in the
fm.. That is, the aGA has significantly better
performances in terms of the BFV and AFV than
the others, even though the search speed of the
aGA is slightly slower than the aGA-FLC in the
CPU.

) fg. and fg.
For the results of f,,; in terms of BFV, the

aGA-2 is the best performer. On the other hand,
the performance of the aGA~3 is worse than that
of the GA, even though the former has an addi-
tional adaptive scheme to regu\late P. and Puy
. Similar result is also shown in terms of AFV
and CPU between the aGA-3 and GA, which im-
plies that the adaptive scheme used in the aGA-3
does not well guide its search to much more good
solutions rather than the GA does. However, in
terms of the AFV, the aGA shows the best per-
formance though its performance in BFV is
slightly worse than the other adaptive algorithms
(aGA-1, aGA-2, aGA-FLQ).

In the comparison of BFV using f,,., the aGA
is the best performer and the two aGAs (aGA-1
and aGA-FLC) are the worst. The performances
of the latter are worse than that of the GA in
terms of the BFV and AFV, which means that
the adaptive schemes using conventional heu-
ristic and the FLC in the aGA-1 and aGA-FLC
do not be well controlliing the P. and Pu.
However, the aGA shows a relatively good result
than the aGA-1 and aGA-FLC in terms of the
AFV, and the search speed of the aGA is quicker
than those of the aGA-2 and aGA-3 in terms of
the CPU.

Based on the analyzed results using the test
suits 1 and 2, each algorithm shows various
performances. The aGA, especially, shows con-
siderately better results in most of the measures
of performance than the other competing alg—
orithms. On the other hand, the performances of
the other adaptive algorithms (aGA-1, aGA-2,
aGA-3 and aGA-FLC) have significantly differ-
ences from problem to problem, and even they
do not show any benefit in some measures of
performance than the GA. which implies that the

adaptive schemes used in the algorithms are not

well controlling a balance between exploitation
and exploration during the courses of their sear-
ches.

{Figure 6] and [Figure 7] respectively show the
behaviors of crossover and mutation operations
to prove the abilities of the adaptive schemes
used in each adaptive algorithm when their
searches have been reached to 100 generations
in fa..

In [Figure 6], the graph of aGA-FLC rapidly
increases In initial generations, and after that,
there are no changes. However, that of the aGA
show various and active behaviors through all
generations. In the aGA-1, aGA-2 and aGA-3,
the graphs do not show any changes in all gen-

eration at all.

0 10 20 30 40 50 60 70 80 90 100
Generation

[Figure 6] Behaviors of crossover operation in
each algorithm

03
0.25
02
& 0.15
0.1

0.05

Generation

[Figure 7] Behaviors of mutation operation in
each algorithm

Similar situation is also shown in [Figure 7].

16 ia

2
T

the aGA shows various behaviors with increas-
ing and decreasing trends like that of the cross-
over operation in [Figure 6]. On the other hand,
aGA-FLC shows an increasing trend con-
tinuously and the others (aGA-1, aGA-2 and
aGA-3) have a little change, during all the
generations.

According to the analysis using [Figure 6] and
[Figure 7], we can confirm that the adaptive
scheme used in the aGA is more efficient in reg-
ulating a balance between exploitation and ex-
ploration than those in the other competing algo-

rithms, during their genetic search processes.

5. Conclusion

In genetic search process, the correct setting
of a balance between exploitation and exploration
is a very difficult task. In this paper, we have
developed a new algorithm, the adaptive genetic
algorithm (aGA), to efficiently regulate a balance
between exploitation and exploration during ge-
netic search process.

The developed aGA uses an adaptive scheme
to adaptively regulate the rates of crossover and
mutation operations in GA, and the key logic of
its scheme is to consider the ratios of degree of
dispersion resulting from the continuous two
generations of GA.

In order to prove the efficiency of the aGA,
various conventional adaptive GAs have been al-
so suggested and tested using two test suits.
Each algorithm, including the aGA, has been
compared using various measures of perfor-
mance. As a result, the performances of the con-
ventional adaptive GAs (aGA-1, aGA-2, aGA-3
and aGA-FLC) have shown significantly various

changes from problem to problem, and even on

some measures of performance, they have not
shown any merits when compared with the GA
without any adaptive scheme. On the other hand,
the proposed aGA is considerately efficient and
its performance is superior to the other compet-
ing algorithms in most of the measures com-
pared, which means that the adaptive scheme
and the local search technique used in the aGA
are well controlling a balance between ex-
ploitation and exploration during the genetic

search process.

Reference

(1] Amir, HM. and T. Hasegawa, Nonlinear
mixed-discrete structural optimization, Jou-
rmal of Structural Engineering, Vol.1l15,
No0.3(1989), pp.626-646.

[2] Angeline, P.J., Adaptive and self-adaptive
evolutionary computations, in : M. Palanis-
wamni, Y. Attikiouzel, R. Markc, D. Fogel, T.
Fukuda, (Eds), Computational Intelligence:
A Dynamic Systems Perspective, Piscata-
way, NJ: IEEE Press, 1995, pp.152-163.

[3] Davis, L., Handbook of Genetic Algorithms,
Van Nostrand Reinhold, 1991.

[4] De Jong, K.A., Analysis of the behavior of
a class of genetic adaptive systems, PhD
Thesis, University of Michigan (University
Microfilms 1975, pp.76-9381.

(5] Espinoza, F.P., B.S. Minsker, and DE.
Goldberg, A self adaptive hybrid genetic al-
gorithm, Proceedings on the Genetic and
Evolutionary Computation Conference, San
Francisco, Morgan Kaufman Publishers,
2001.

[6] Eiben, AE., R. Hinterding, and Z. Michale-

wicz, Parameter control in evolutionary al-

gorithms, IEEE Transactions on Evolution
Computation, Vol.3, No.2(1999), pp.124-141.

[7} Fogel, D.B. G.B. Fogel, and K. Ohkura,
Multiple-vector self-adaptation in evolu-
tionary algorithms, BioSystems, No.61(2001),
Pp.155-162.

[81 Gen, M. and R. Cheng, Genetic Algorithms
and Engineering Design, John Wiley and Son,
1997.

[9] Grefenstette,].J.,, Optimization of control
parameters for genetic algorithms, IEEE
Transactions on Systems, Man, and Cyber-
netics, No.16(1986), pp.122-128.

[10] Herrera, F., and M. Lozano, Fuzzy adaptive
genetic algorithms : design, taxonomy and
future directions, Soft Computing, Vol.7,
No.8(2003), pp.545-562.

[11] Hoffmeister, F., and T. Back, Genetic algo-
rithms and evolution strategies : similarities
and differences, Proceedings of the 1st
Workshop on Parallel Problem Solving from
Nature (PPSN1), 1991, pp.455-471.

[12] Hong, T.P,, and HS. Wang, A dynamic mu-
tation genetic algorithm, Proceedings of the
IEEE International Conference on Systems,
Man, and Cybernetics, No.3(1996), pp.2000-
2005.

[13) Hong, T.P., H.S. Wang, W.Y. Lin, and W.Y.
Lee, Evolution of appropriate crossover and
mutation operators in a genetic process,
Applied Intelligence, No.16(2002), pp.7-17.

[14] Lee, C.Y., Y.S. Yun, and M. Gen, Reliability
optimization design for complex systems by
hybrid GA with fuzzy logic control and local
search. IEICE Transaction on Fundamen-
tals, E85-A(4) : (2002), pp.880-891.

(151 Li, B. and W. Jiang, A novel stochastic opti-

mization algorithm. IEEE Transactions on

o AgA v 17

Systems, Man, and Cybernetics-Part B:
Cybernetics, Vol.30, No.1(2000), pp.193-198.

[16] Mak, KL., Y.S. Wong, and W.W. Wang, An
adaptive genetic algorithm for manufactur-
ing cell formation, International Journal of
Manufacturing Technology, No.16(2000), pp.
491-497.

[17] Michalewicz, Z., Genetic Algorithms + Data
Structures = Evolution Program, Second Ex-
tended Edition, Spring-Verlag, 1994.

[18] Rabi, V. and B.S.N. Murty, P.J. Reddy, Non-
equilibrium simulated annealing algorithm
applied to reliability optimization of complex
systems, IEEE Transactions on Reliability,
Vol.46, No.2(1997), pp.233-239.

[19] Sandgren, E., Nonlinear integer and discrete
programming in mechanical design opti-
mization, ASME Journal of Mechanical De-
sign, Vol.112, No.2(1990), pp.223-229.

[20] Srinvas, M. and L.M. Patnaik, Adaptive
Probabilities of crossover and mutation in
genetic algorithms, IEEE Transaction on
Systems, Man and Cybernetics, Vol.24, No.4
(1994), pp.6H6-667.

[21] Yen, J., J.C. Liao, B.J. Lee, and D. Randolph,
A hybrid approach to modeling metabolic
systems using a genetic algorithm and sim-
plex method. IEEE Transactions on Sys-
tems, Man, and Cybernetics-Part B : Cyber-
netics, Vol.28, No.2(1998), pp.173-191.

[22] Yun, Y.S., Genetic algorithm with fuzzy
logic controller for preemptive and non-pre-
emptive job shop scheduling problems, Com-
puters and Industrial Engineering, Vol43,
No.3(2002), pp.623-644.

[23] Yun, Y.S. and C.U. Moon, Comparison of
adaptive genetic algorithms for engineering

optimization problems, International Journal

of Industrial Engineering, Vol.10, No.4(2003),
pp.584-590.

{24] Wang, P.T., G.S. Wang, and Z.G. Hu,
Speeding up the search process of genetic
algorithm by fuzzy logic, Proceedings of the
5" European Congress on Intelligent Tech-
niques and Soft Computing, 1997, pp.665-
671.

[25] Wu, Q.H., Y.J. Cao, and].Y. Wen, Optimal
reactive power dispatch using an adaptive
genetic algorithm, Electrical Power and
Energy Systems, Vol.20, No.8(1998), pp.o63-

of
4

569.

[26] Wu, S.J., and P.T. Chow, Genetic algorithms
for nonlinear mixed discrete-integer opti—
mization problems via meta-genetic param-
eter optimization, Engineering Optimization,
No.24(1995), pp.137-159.

[27] Shuguang, Z. and J. Licheng, Multi-ob-
jective evolutionary design and knowledge
discovery of logic circuits based on an adap-
tive genetic algorithm, Genetic Program-
ming and Evolvable Machines, No.7(2006),
pp.195-210.

