Ultrastructural Change and Insulin Distribution of the Cultured Pancreatic Islet $\beta$-cell

배양된 이자섬 $\beta$세포의 미세구조적 변화와 인슐린 분포 양상

  • Min, Byoung-Hoon (Department of Life Science, College of Natural Science, Hallym University) ;
  • Kim, Soo-Jin (Department of Life Science, College of Natural Science, Hallym University)
  • 민병훈 (한림대학교 자연과학대학 생명과학과) ;
  • 김수진 (한림대학교 자연과학대학 생명과학과)
  • Published : 2007.12.31

Abstract

The Pancreatic islet are the clusters of endocrine cells scattered through out the exocrine pancreas. Transplantation of a sufficient pancreatic islets can normalize blood glucose level so that may prevent devastating complications of type I diabetes(IDDM) and other side effects of the IDDM. Recently, there are several approaches to transplant sufficient pancreatic islet, and it was comprised in increase or regeneration of the endogenous $\beta$-cell mass from donor's pancreas, but relatively few studies have been devoted to the morphological characters of the isolated and 3 day cultured pancreatic islets. We investigated morphological pattern of intracellular structure of isolated and 3 day cultured pancreatic islets. The morphological characters of the pancreatic islets were observed by scanning electron microscope and transmission electron microscope, and insulin distribution of the each islets were observed by transmission electron microscope, and were labeled with insulin antibody. Intracellular structures including nuclei, mitochondria, RER, Golgi complex and many secretory granules were normally appeared in the isolated pancreatic islets which was extracted immediately dornor's pancreas, however, There is a significant morphological changes between the 3 day cultured pancreatic islets and isolated islets. 3 day cultured pancreatic islet's $\beta$-cells had normal nuclei but increased cytoplasm mass and RER and developed Golgi complex. Insulin secretory granules were decreased in numbers rather than isolated pancreatic islet. In this study, the pattern of intracellular structure variation was examined during pancreatic islet culture. Most distinct features are variation of the insulin secretory granules, and developed RER, and dilated golgi complex. Therefore, we suggested that the various change of the morphological characters on cultured pancreatic islets were responsible for the function(biosynthesis and secretion of insulin) and growth. These results were also cultured islets have greater ability to recover and maintain normoglycemia than isolated islet transplantation.

이자섬은 이자를 구성하는 외분비조직에 둘러싸여 존재하는 내분비세포의 집단으로, 이자섬에서 분비되는 인슐린은 $\beta$세포에서 분비되는 호르몬이며, 세포질의 리보좀에서 합성되고 골지체를 경유하여 세포질로 방출되는 기작을 가지고 있다. 충분한 양의 이자섬 이식은 인슐린 의존형 당뇨병인 제1형 당뇨병에서 정상혈당을 회복시키고, 당뇨 합병증을 방지할 수 있는 치료방법으로 사용되고 있다. 하지만 당뇨병 환자에게 이식을 위한 이자섬의 양에 비해 공여자로부터 증여된 이자섬의 양은 제한적이다. 이러한 문제점은 이자섬의 증식으로 연구되고 있으나, 배양된 이자섬이 정상 조직내의 이자섬과 형태적 기능적으로 동일한 것인지에 관한 연구는 미비하였다. 따라서 본 연구에서는 분리된 이자섬과 배양된 이자섬을 구성하는 세포들의 내부구조의 변화를 주사전자현미경, 투과전자현미경을 이용하여 세포의 미세구조를 확인하고, 인슐린 항체를 이용한 $\beta$세포 내의 인슐린 분포양상을 확인하여 다음과 같은 결과를 얻었다. 분리된 이자섬의 $\beta$세포는 일반적인 핵 미토콘드리아, 세포질세망 그리고 인슐린 과립이 분포하고, 배양된 이자섬 $\beta$세포의 경우 분리된 이자섬에 비하여 일반적인 핵의 모습과 부피가 증가한 세포질과 미토콘드리아, 세포질세망 그리고 골지체의 발달이 이루어지는 것으로 관찰되었다. 인슐린 과립의 경우 분리된 이자섬에 비해 감소하며, 세포막 주위에 분포하는 것으로 관찰되었다. 배양된 이자섬에서 관찰되는 인슐린 과립 분포의 변화, 세포질세망의 증가, 골지체의 발달은 배양된 이자섬 $\beta$세포의 인슐린 생성 분비 기능의 향상과 부피의 증가가 이루어지기 위한 세포 내부의 형태적 변화가 이루어지는 것으로 추측된다.

Keywords

References

  1. Abraham EJ, Leech CA, Lin JC: Insulinotropic hormone glucagon-like peptide-1 differentition of human pancreatic islet -derived progenitor cells into insulin producing cells. Endocrinology 143 : 3152-3161, 2002 https://doi.org/10.1210/en.143.8.3152
  2. Bouwens L, Ilse R: Regulation of Pancreatic Beta-Cell Mass. Physiol Rev 85 : 1255-1270, 2005 https://doi.org/10.1152/physrev.00025.2004
  3. Brelje TC, Allaire P, Hegre O, Sorenson RL: Effect of prolactin versus growth hormone on islet function and the importance of using homologous mammosomatotropic hormones. Endocrinology 125 : 2392-2399, 1989 https://doi.org/10.1210/endo-125-5-2392
  4. German M, Wang J: The insulin gene contains multiple transcriptional elements that> response glucose. Mol Cell Biol. 14: 4067-4075, 1994 https://doi.org/10.1128/MCB.14.6.4067
  5. Guest PC, Bailyes EM, Rutherford NG: Hutton JC. Insulin secretory granule biogenesis: coordinate regulation of biosynthesis of the majority of constituent proteins. Biochem J 274: 73-78, 1991 https://doi.org/10.1042/bj2740073
  6. Hellerstro C, Swene I: Functional maturation and proliferation of fetal pancreatic b-cells. Diabetes 40 (Suppl. 2) : 89-93, 1991 https://doi.org/10.2337/diab.40.2.S89
  7. Kahn S: Regulation ${\beta}$-cell function in vivo. Diabetes Rev 4 : 372-387, 1996
  8. Lawrence R: Induction of islet cell neogenesis in the adult pancreas: The partial duct obstruction model. Microsc Res Tech 43 : 337-346, 1998 https://doi.org/10.1002/(SICI)1097-0029(19981115)43:4<337::AID-JEMT8>3.0.CO;2-U
  9. Le Roith D: Insulin-like groth factor. N Engl Med 336 : 633-640, 1997 https://doi.org/10.1056/NEJM199702273360907
  10. McEvoy RC, Hegre OD: Morphometric quantitation of the pancreatic insulin-, glucagon-, and somatostatin-positive cell populations in normal and alloxan-diabetic rats. Diabetes 26: 1140-1146, 1977 https://doi.org/10.2337/diabetes.26.12.1140
  11. Merriman TR, Todd JA: Genetics of autoimmune disease. Curr Opin Immmunol 7 : 786-792, 1995 https://doi.org/10.1016/0952-7915(95)80049-2
  12. Orci L, Unger RH: Functional subdivision of islet of Langerhans and possible role of D cells. Lancet 2 : 1243-1244, 1975
  13. Philippe J, Missotten M: Functional characterization of a cAMP-responsive element of the rat insulin I gene. J Biol Chem 265: 1465-1469, 1990
  14. Ricordi C, Finke EH, Lacy PE: A method for the mass isolation of islets from the adult pig pancreas. Diabetes 35 : 649-53, 1986 https://doi.org/10.2337/diabetes.35.6.649
  15. Rooman I, Schuit F, Biuwens L: Effects of vascular endothelial growth factor on growth factor and differentiation of pancreatic ductual epithelium. Lab Inves 76 : 225-232, 1997
  16. Scharfmann R, Czernichow P: Differentiation and growth of pancreatic beta cells. Diabete Metab 22: 223-228, 1996
  17. Sekine N, Wollheim CB, Fujita T: GH. signalling in pancreatic beta-cells. Endocr J 45 (suppl.) : S33-S40, 1998 https://doi.org/10.1507/endocrj.45.Suppl_S33
  18. Shapiro AM, Lakey JR, Ryan EA: Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid free immunosuppressive regimen. N Engl J Med 343 : 230-238, 2000 https://doi.org/10.1056/NEJM200007273430401
  19. Swenne I: Pancreatic beta-cell growth and diabetes mellitus. Diabetologia 35: 193-201, 1992 https://doi.org/10.1007/BF00400917
  20. Warnock GL, Ellis D, Rajotte RV, Dawidson I, Baekkeskov S, Egebjerg J: Studies of the isolation and viability of human islets of Langerhans. Transplantation 45 : 957-963, 1988 https://doi.org/10.1097/00007890-198805000-00024