토양 염류농도가 시설토마토의 생육, 수량, 광합성속도 및 무기양분 흡수에 미치는 영향

Effect of Salt Concentration in Soil on the Growth, Yield, Photosynthetic Rate, and Mineral Uptake of Tomato in Protected Cultivation

  • 이한철 (원예연구소 시설원예시험장) ;
  • 조명환 (원예연구소 시설원예시험장) ;
  • 이시영 (원예연구소 시설원예시험장) ;
  • 최경이 (원예연구소 시설원예시험장) ;
  • 이재한 (원예연구소 원예기획조정과)
  • 발행 : 2007.12.30

초록

본 연구는 토양 염도(EC)에 따른 토마토의 생육효과를 검토코자 토양 중 염류농도(EC)를 각각 1.0, 2.5, 5.0 및 $7.5dS{\cdot}m^{-1}$로 두어 폿트 실험을 수행하였다. 토마토의 초장, 생체중, 건물중 등 생육은 토양 중 염류농도가 높을수록 억제되었으며 특히 EC $5.0dS{\cdot}m^{-1}$ 이상의 염류농도에서 큰 차이를 나타내었다. 지상부의 생체중과 건물중은 초장과는 달리 EC $7.5dS{\cdot}m^{-1}$에서 감소하였다. 반면 뿌리의 생체중과 건물중은 지상부와는 달리 EC $5.0dS{\cdot}m^{-1}$까지는 차이가 없었으나 EC $7.5dS{\cdot}m^{-1}$서는 매우 감소하였다. 평균과중은 EC $5.0dS{\cdot}m^{-1}$에서 92g으로 EC $1.0dS{\cdot}m^{-1}$ 129g보다 37g이나 가벼웠고 착과수는 평균과중과는 달리 EC $7.5dS{\cdot}m^{-1}$에서는 매우 감소하였다. 수량은 EC 5.0, EC $7.5dS{\cdot}m^{-1}$에서 각각 3,810, 3,216kg/10a로 EC $1.0dS{\cdot}m^{-1}$의 5,488kg/10a보다 각각 31%, 41% 감소하였다. 토마토 과실의 당도와 산도는 염류농도가 높을수록 증가하는 경향이었으며 토양 중 EC $5.0dS{\cdot}m^{-1}$ 이상에서 과실당도가 5.2% 이상 증가하였다. 잎의 수분퍼텐셜 및 엽록소, 기공전도도 및 광합성 함량은 염류농도가 높을수록 억제되었다. 총 T-N, P 및 Na 함량은 염 농도가 높아질수록 증가하는 경향이었으나, Ca, Mg 및 K 함량은 염류농도가 높을수록 감소하였다. Na 함량은 증가하였으며 다른 성분은 처리간에 차이가 없었다.

This study was conducted to investigate the effects of high concentrations of salts in soil on the growth, yield, quality, photosynthetic rate, and mineral uptake of tomato ('House Momotaro') in pot cultivation. The growth of tomato such as plant height, top plant weight and root weight decreased as the concentrations of salts in soils increased. Yield decreased by 31% and 41% in EC 5.0 and $7.5dS{\cdot}m^{-1}$, respectively compared with the salt concentration of EC $1.5dS{\cdot}m^{-1}$. Yield reduction was caused by low mean weight and number of fruit if at high salt concentration in soil, and affected by low photosynthetic rate and water potential in leaf, The rate of blossom-end rot was highest (16.7%) in EC $7.5dS{\cdot}m^{-1}$ and increased as the concentrations of salts in soils increased. The contents of soluble solids and titratable acids showed a tendency to increase with increasing the concentrations of salts in soils. Photosynthetic rate, water potential and stomatal conductance in leaf decreased as the salt concentration in soil increased. The higher the salt concentration in soil, the lower the mineral uptake such as T-N, P, K, Ca and Mg but, the higher the content of Na.

키워드

참고문헌

  1. Balibrea, M.E., E. Cayuela, F. Artes, and F. Perz-Alfocea, 1997. Salinity effects on some postharvest quality factors in a commercial tomato hybrid. J. Hort. Sci. 72:885-892
  2. Bernstein, L. 1959. Salt tolerance of vegetable crops in the west. USDA Info. Bull. p. 205
  3. Boyer, J.S. 1970. Leaf enlargement and metabolic rates in com, soybean and sunflower at various leaf water potentials. Plant Physiol. 46:233-235 https://doi.org/10.1104/pp.46.2.233
  4. Cuartero, J. and F.M. Rafael. 1999. Tomato and salinity. Sci. Hort. 78:83-125
  5. Flower, T.J., P.F. Troke, and A.R. Yeo. 1977. The mechanism of salt tolerance in halophytes. Ann. Rev. Plant Physiol. 28:89-121 https://doi.org/10.1146/annurev.pp.28.060177.000513
  6. Gough, C. and G.E. Hobson. 1990. A comparison of the productivity, quality, shelf life characteristics and consumer reaction to the crop from cherry tomato plants grown at different levels of salinity. J. Hort. Sci. 65( ):431-439
  7. Jobes, J.A., G.J. Hoffinan, and J.D. Wood. 1981. Leaching requirement for salinity control.. Oat, tomato, and cauliflower. Agri. Water Manag. 4:393-407 https://doi.org/10.1016/0378-3774(81)90029-9
  8. Li, Y.L., C. Stanghellini, and B. Challa. 2001. Effect of electrical conductivity and transpiration on production of greenhouse tomato (Lycopersicon esculentum L.). Scientia Hort. 88:11-29 https://doi.org/10.1016/S0304-4238(00)00190-4
  9. Kebede, H., N. Martin, J. Nienhuis, and G. King. 1994. Leaf anatomy of two Lycopersicon species with contrasting gas exchange properties. Crop Sci. 34:108-113 https://doi.org/10.2135/cropsci1994.0011183X003400010019x
  10. Kinett, J.M. and M.M. Peet. 1997. Tomato, p. 227245. In: H.C. Wien(ed.). The physiology of vegetable crops. CAB International
  11. Martines, V., A. Cerda, and E.G. Fernandez. 1987. Salt tolerance of four tomato hybrids. Plant & Soil 97:233-242 https://doi.org/10.1007/BF02374946
  12. Mass, E.D. 1985. Crop tolerance to saline splinkler water. Plant & Soil 89:372-384
  13. Mizrahi, Y. 1982. Effects of salinity on tomato fruit ripening. Plant Physiol. 69:966-970 https://doi.org/10.1104/pp.69.4.966
  14. Mizrahi, Y., E. Taleisnik, V. Kagan-Zur, Y. Zohar, R. Offenbach, E. Matan, and R. Golan. 1988. A saline irrigation regime for improving tomato fruit quality without reducing yield. J. Amer. Soc. Hort. Sci. 113(2):202-205
  15. Pasternak, D., Y. De-Malach, and I. Borovic. 1986. Irrigation with brackish water under desert condition. Effects of time of application of brackish water on production of processing tomatoes. Agri. Water Mang. 12:149-158 https://doi.org/10.1016/0378-3774(86)90013-2
  16. Perez-Alfocea, E, M.T. Estan, A.S. Cruz, and M.C. Bolarin. 1993. Effects of salinity on nitrate, total nitrogen, soluble protein and free amino acid levels in tomato plants. J. Hort. Sci. 68:1021-1027
  17. Rhee, B.C., B.Y Lee, Y.H. Choi, and Y.H. Choi. 2001. Physiological and anatomical characteristics of 2nd truss-limited tomatoes as affected by KCI or NaCI supplement to nutrient solution. J. Kor. Soc. Hort. Sci. 42:25-31
  18. Yamaguchi, Y. 1989. Initiation mechanism on the salt tolerance of rice varieties. Jpn. J. Soil Sci. Plant Nutr. 60:210-219