DOI QR코드

DOI QR Code

Effect of Boric Acid on In Vitro Pollen Germination in Transgenic Plants Expressing Monoclonal Antibodies

단일항체를 발현하는 형질전환 식물체의 In Vitro 화분발아에 대한 Boric Acid의 영향

  • Ahn, Mi-Hyun (Department of Biological Science, Wonkwang University) ;
  • Lee, Kyung-Jin (Department of Biological Science, Wonkwang University) ;
  • Ko, Ki-Sung (Department of Biological Science, Wonkwang University)
  • Published : 2007.12.31

Abstract

Pollen germination viability is an essential factor to produce seeds from pollination and fertilization, which are required to maintain plant generation. In this study, we tried to identify the effect of boric acid on pollen germination and tube grouch in non-transgenic and transgenic plants expressing monoclonal antibodies (anti-colorectal cancer mAb CO17-1A, anti-breast cancer mAb BR55, and anti-rabies virus mAb57). The pollen of non-transgenic plant was treated with different concentration of boric acid (0, 5, 10, 15, 20, $40{\mu}g/mL$) in germination buffer to investigate its effect on in vitro pollen germination. At $20{\mu}g/mL$ of boric acid, tile pollen germination rate was the highest (49.5%) compared to other concentrations. In general, the germination rate significantly increased 3-10 folds in boric acid ($20{\mu}g/mL$) treated group in non-transgenic and transgenic plants. Also, the pollen tube length increased in boric acid ($20{\mu}g/mL$) treated groups. In the treated group, the pollen tube length increased until 3 h boric acid treatment and decreased after the 3 h, indicating that the 3 h is the most appropriate incubation time period. Western blot analysis showed that the mAb transgene expression was more stable in leaf than pollen in transgenic plants. This study suggested that $20{\mu}g/mL$ of boric acid is ideal concentration to induce in vitro pollen germination of transgenic plants expressing therapeutic monoclonal antibodies, indicating stable pollination and fertilization in transgenic plants.

식물화분발아는 수분수정을 통한 식물의 종자형성과 식물개체의 지속적 세대유지를 위한 중요한 요소이다. 따라서, 본 연구에서는 boric acid를 이용하여 형질전환 하지 않은 (NT) 식물과 항암활성 (anti-colorectal cancer mAb CO17-1A, anti-breast cancer mAb BR55) 혹은 항바이러스 활성을 갖는 항체 (anti-rabies virus mAb57)의 유전인자를 발현하는 형질전환식물 간의 in vitro pollen germination과 Pollen tube growth의 차이를 알아보았다. Boric acid의 화분발아에 미치는 영향을 보기 위하여 0, 5, 10, 15, 20, $40{\mu}g/mL$의 농도를 갖는 발아용액 (germination buffer)을 담배식물 화분에 처리하여 pollen germination rate을 본 결과 $20{\mu}g/mL$에서 가장 높게 발아율 (49.5%)을 보였다. Boric acid ($20{\mu}g/mL$)에 대해 형질전환식물과 NT 식물에서 화분발아율을 관찰한 결과, boric acid를 처리하지 않은 화분에 비해 형질전환여부에 관계없이 발아율이 3-10배 증가하였다. 또한, boric acid $20{\mu}g/mL$농도에서 형질전환식물과 NT 식물의 pollen tube length의 성장률이 가장 높게 나타났다. 시간 별로 형질전환 식물들의 Pollen tube length를 확인 한 결과, germination buffer ($20{\mu}g/mL$)를 처리하고 난 후 3시간까지 가장 빠른 성장률을 보였으며, 3시간 후에는 그 성장률이 둔화됨을 확인하였다. Western blot를 이용하여 식물의 화분과 잎에서 황체유전자 단백질 발현을 확인하였다. 화분과 잎에서의 발현을 비교해 본 결과, 잎에서 항체의 안정한 발현을 확인하였다. 본 연구결과를 통해 $20{\mu}g/mL$의 boric acid가 항체발현 형질전환담배식물의 in vitro pollen germination을 보기 위해 가장 적절한 농도라는 것을 제시하였다. 궁극적으로 의료용 항체유전자를 발현하는 형질전환식물의 in vitro pollen germination viability를 확인함으로써 형질전환식물의 화분의 안정적인 수분수정이 이루어질 수 있음을 간접적으로 제시하였다.

Keywords

References

  1. Bakker H, Bardor M, Molthoff JW, Gomord V, Elbers I, Stevens LH, Jordi W, Lommen A, Faye L, Lerouge P, Bosch D (2001) Galactose-extended glycans of antibodies produced by transgenic plants. Proc Nat! Acad Sci USA 98: 2899-2904
  2. Breedveld FC (2000) Therapeutic monoclonal antibodies. Lancet 355: 735-740 https://doi.org/10.1016/S0140-6736(00)01034-5
  3. Brodzik R, Glogowska M, Bandurska K, Okulicz M, Deka D, Ko K, van der Linden J, Leusen JH, Pogrebnyak N, Golovkin M, Steplewski Z, Koprowski H (2006) Plantderived anti-Lewis Y mAb exhibits biological activities for efficient immunotherapy against human cancer cells. Proc Natl Acad Sci USA 103: 8804-8809
  4. Chesnokov V, Manteuffel R (2000) Kanamycin resistance of germinating pollen of transgenic plants. Sex Plant Reprod 12: 232-236 https://doi.org/10.1007/s004970050006
  5. Gomord V, Chamberlain P, Jefferis R, Faye L (2005) Biopharmaceutical production in plants: problems, solutions and opportunities. Trends in Biotechnol 23: 559-565 https://doi.org/10.1016/j.tibtech.2005.09.003
  6. Vaucheret H, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Mourrain P, Palaugui JC, Vernhettes S (1998) Transgene-induced gene silencing in plants. The Plant Journal 16: 651-659 https://doi.org/10.1046/j.1365-313x.1998.00337.x
  7. Koga-Ban Y, Tabei Y, Ishimoto M, Nishizawa Y, Tsuchiya K, Imaizumi N, Nakamura H, Kayano T, Tanaka H (2004) Biosafety assessment of transgenic plants in the greenhouse and the field : A case study of transgenic cucumber. The Jap Agr Res Quarterly 38: 167-174 https://doi.org/10.6090/jarq.38.167
  8. Ko K, Brown SK, Norelli JL, and Aldwinckle HS (1998) Alterations of nptIl and gus expression following micropropagation of transgenic M.7 apple rootstock lines. J Amer Soc Hort Sci 123: 11-18
  9. Ko K, Tekoah Y, Rudd PM, Harvey DJ, Dwek RA, Spitsin S, Hanlon CA, Rupprecht C, Dietzschold B, Golovkin M, Koprowski H (2003) Function and glycosylation of plantderived antiviral monoclonal antibody. Proc Natl Acad Sci USA 100: 8013-8018
  10. Ko K, Koprowski H (2005) Plant biopharrning of monoclonal antibodies. Virus Res 111: 93-100 https://doi.org/10.1016/j.virusres.2005.03.016
  11. Ko K, Steplewski Z, Glogowska M, Koprowski H (2005) Inhibition of tumor growth by plant-derived mAb. Proc Natl Acad Sci USA 102: 7026-7030
  12. Kwack BH (1976) Studies on cellular site of calcium action in promoting pollen tube growth. Plant Physiol 52: 825-833
  13. Ma JK, Hikmat BY, Wycoff K, Vine ND, Chargelegue D, Yu L, Hein MB, Lehner T (1998) Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat Med 4: 601-606 https://doi.org/10.1038/nm0598-601
  14. Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4: 794-805 https://doi.org/10.1038/nrg1177
  15. Picton JM, Steer MW (1983) Evidence for the role of $Ca^2+$ ions in tip extension in pollen tube. Proto plasma 115: 11-17
  16. Radlowski M, Bartkowiak S, Winiarczyk K, Kalinowski A (2005) Differential influence of bacitracin on plant proteolytic enzyme activities. Biochim Biophys Acta 1722: 1-5 https://doi.org/10.1016/j.bbagen.2004.11.004
  17. Shivanna KR, Johri BM (1985) The angiosperm pollen. Wiley Eastern Ltd. pp. 5:94-95
  18. Wang Q, Lu L, Wu X, Li Y, Lin J (2003) Boron influences pollen germination and pollen tube growth in Picea meyeri. Tree Physiol 23: 345-351 https://doi.org/10.1093/treephys/23.5.345