DOI QR코드

DOI QR Code

기능획득 돌연변이 인삼 모상근의 대량생산

Mass Production of Gain-of-Function Mutants of Hair Roots in Ginseng

  • 고석민 ((주) 유진텍 부설연구소) ;
  • 인동수 ((주) 유진텍 부설연구소) ;
  • 정화지 ((주) 유진텍 부설연구소) ;
  • 최동욱 (전남대학교 사범대학 과학교육학부 생물교육) ;
  • 유장렬 (한국생명공학연구원 식물유전체센터)
  • Ko, Suk-Min (Laboratory of Functional Genomics for Plant Secondary Metabolism (National Research Laboratory), Eugentech Inc.) ;
  • In, Dong-Soo (Laboratory of Functional Genomics for Plant Secondary Metabolism (National Research Laboratory), Eugentech Inc.) ;
  • Chung, Hwa-Jee (Laboratory of Functional Genomics for Plant Secondary Metabolism (National Research Laboratory), Eugentech Inc.) ;
  • Choi, Dong-Woog (Department of Biology Education, Chonnam National University) ;
  • Liu, Jang-Ryol (Plant Genome Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 발행 : 2007.12.31

초록

본 연구는 아그로박테리움 공동배양법을 이용한 기능획득 인삼 모상근의 대량생산을 위한 조건 확립에 대한 것이다. 일반적으로, 인삼과 같이 형질전환을 통한종자의 확보가 어려운 식물에서는 loss-of-function을 이용한 기능유전체 연구에 한계가 있다. 한편, 유전자의 기능을 활성화시키는 방법 (gain-of-function)인 activation tagging 기술은 이러한 문제점을 극복할 수 있는 대안이 될 수 있으며, Agrobacterium rhizogenes를 이용한 모상근 생산 시스템은 대량의 돌연변이체를 안정적으로 용이하게 얻을 수 있다는 점에서 최적의 시스템이라고 할 수 있다. 본 연구에서는 activation-tagging된 효율적인 형질전환 모상근 생산에 있어서의 최적의 아그로박테리움 균주 및 인삼조직, 배지조성 등에 대한 조건을 확립하였으며, 다양한 배지에서의 형질전환 모상근의 생장률 및 분지율, 표현형 등을 조사하였다. 엽병 절편을 activation-tagging vector pKH01을 가지고 있는 A. rhizogenes R1000와 공동배양하였을 때 배양 4주후 85.9%의 빈도로 모상근이 생산되었다. 모상근의 최대 생장과 분지도를 나타내는 배양조건을 조사한 바 엽병절편을 1/2 SH 배지에서 4주 배양하였을 때 왕성하게 생장하였으며 2.6의 분지도를 보여주었다. 최종적으로 1,989개체의 독립적인 형질전환 모상근 line을 생산하였으며, 이들 모상근 line은 인삼 진세노사이드 생합성 관련 유전자의 발굴 및 기능해석에 유용하게 쓰일 것이다.

This study describes conditions for the mass production of activation-tagged mutant hairy root lines of ginseng by cocultivation with Agrobacterium rhizogenes. Because it is not currently possible to produce progeny from transgenic ginseng, a loss-of-function approach for functional genomics cannot be appliable to this species. A gain-of-function approach is alternatively the choice and hairy root production by cocultivation of A. rhizogenes would be most practical to obtain a large number of mutants. Various sources of explants were subjected to genetic transformation with various strains of A. rhizogenes harboring the activation-tagging vector pKH01 to determine optimum conditions for the highest frequency of hairy root formation on explants. Petiole explants cocultivated with A. rhizogenes R1000 produced hairy roots at a frequency of 85.9% after 4 weeks of culture. Conditions for maximum growth or branching rate of hairy roots were also investigated by using various culture media. Petiole explants cultured on half strength Schenk and Hildebrandt medium produced vigorously growing branched roots at a rate of 2.6 after 4 weeks of culture. A total of 1,989 lines of hairy root mutants were established in this study. These hairy root lines will be useful to determine functions of genes for biosynthesis of ginsenosides.

키워드

참고문헌

  1. Bouchez D, Hofte H (1998) Functional genomics in plants. Plant Physiol 118:725-732 https://doi.org/10.1104/pp.118.3.725
  2. Mallol A, Cusido RM, Palazon J, Bonfill M, Morales C, Pinol MT (2001) Ginsenoside production in different phenotypes of Panax ginseng transformed roots. Phytochemistry 57(3):365-371 https://doi.org/10.1016/S0031-9422(01)00062-0
  3. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15: 473-4197 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  4. Palazon J, Mallol A, Eibl R, Lettenbauer C, Cusido RM, Pinol MT (2003) Growth and ginsenoside production in hairy root cultures of Panax ginseng using a novel bioreactor. Planta Med 69: 344-349 https://doi.org/10.1055/s-2003-38873
  5. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures, Can J Bot 50: 199-204 https://doi.org/10.1139/b72-026
  6. Tani H, Chen X, Nurmberg P, Grant JJ, SantaMaria M, Chini A, Giloy E, Birch PRJ, Loake GJ (2004) Activation tagging in plants: a tool for gene discovery. Funct lntegr Genomics 4: 258-266
  7. Van der Fits, Hilliou F, memelink J (2001) T-DNA activation tagging as a tool to isolate regulators of a metabolic pathway from a genetically non-tractable plant species. Transgenic Res 10: 513-521 https://doi.org/10.1023/A:1013087011562
  8. Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil E J, Neff MM, Nguyen J T, Satio S, Wang ZY, Xia Y, Dixon RA, Harrison MJ, Lamb C J, Yanofsky F, Chory J (2000) Activation Tagging in Arabidopsis. Plant Physiol 122: 1003-1013 https://doi.org/10.1104/pp.122.4.1003
  9. Wendy S, Yosimura K, Yamaguchi H, Shimomura K (1999) High production of gensenoside by transformed root cultures of Panax ginseng. Effect of basal medium and Agrobacterium rhizogenes strains. Bull Natl Health Sci 117:148-154
  10. White PR (1943) Nutrient deficiency studies and an improved inorganic nutrient for culture of excised tomato roots. Growth 7: 53-65
  11. Woo SS, Song JS, Lee JY, In DS, Chung HJ, Liu JR, Choi DW (2004) Selection of high ginsenoside producing ginseng hairy root strains using targeted metabolic analysis. Phytochemistry 65: 2751-2761 https://doi.org/10.1016/j.phytochem.2004.08.039
  12. Yang DC., Kim YH, Min BH, Shin SL, Choi KT (1998) Selection of active growth root strains in ginseng. Korean J Plant Tiss Cult 25: 525-530
  13. Yang DC, Kim YH, Yang DC, Shin SL, Choi KT (1999)The optimum conditions for induction of ginseng hairy roots. Korean J Plant Res 12: 1-9
  14. Zhang YH, Zhong JJ, Yu JT (1996) Effect of Nitrogen Source on Cell Growth and Production of Ginseng Saponin and Polysaccharide in Suspension Cultures of Panax notoginseng. Biotech Prog 12: 567 -571 https://doi.org/10.1021/bp9600391

피인용 문헌

  1. In vitro induction of hairy root from isoflavones-producing Korean wild arrowroot Pueraria lobata vol.39, pp.3, 2012, https://doi.org/10.5010/JPB.2012.39.3.205