Thermodynamic Model for Partition Coefficients in the Two Protein Systems

  • Jung, Chang-Min (Division of Chemical Engineering and Molecular Thermodynamics Laboratory, Hanyang University) ;
  • Bae, Young-Chan (Division of Chemical Engineering and Molecular Thermodynamics Laboratory, Hanyang University) ;
  • Kim, Jae-Jun (College of Architecture, Hanyang University)
  • Published : 2007.12.31

Abstract

The equation of state developed herein is predicated on a hard-sphere reference with perturbations introduced via a potential function to account for electrostatic forces and for attraction between protein particles. During this process, the generalized Lennard-Jones (GLJ) pair potential function is employed. The GLJ pair potential function is employed to represent the protein-protein interaction in two-protein systems. Via the use of the relation between the equation of state and the chemical potential, the phase behavior in the aqueous two-protein system can be estimated. The partition coefficients can be obtained via these processes. The calculated values of the coefficients agree fairly well with the experimental data in the given pH and ionic strength range, with no additional adjustable model parameters.

Keywords

References

  1. E. J. Cohn and J. T. Edsall, Proteins, Amino Acids, and Peptides, Reinhold, New York, 1943
  2. F. Rothstein, Differential Precipitation of Proteins, Protein Purification Process Engineering, R. G. Harrison, Ed., Dekker, New York 1994, p. 115
  3. F. Rosenberger, J. Cryst. Growth, 166, 40 (1996) https://doi.org/10.1016/0022-0248(96)00077-2
  4. R. Piazza, Curr. Opin. Colloid Interface Sci., 5, 38 (2000)
  5. A. Tardieu, F. Bonnete, D. S. Finet, and D. Vivares, Acta Crystallogr. Sect. D: Biol. Crystallogr., 58, 1549 (2002)
  6. M. L. Broide, T. M. Tominc, and M. D. Saxowsky, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 53, 6325 (1996)
  7. M. J. Grimson, J. Chem. Soc. Faraday Trans., 2, 817 (1983)
  8. C. J. Coen, Ph.D. Thesis, Univ. of California, Berkeley (1995)
  9. C. J. Coen, J. M. Prausnitz, and H. W. Blanch, Biotechnol. Bioeng., 53, 567 (1997)
  10. I. H. Kim and Y. C. Bae, Fluid Phase Equilibria, 168, 201 (2000)
  11. T. Boublik, J. Chem. Phys., 53, 417 (1970)
  12. N. F. Carnahan and K. E. Starling, J. Chem. Phys., 51, 635 (1969)
  13. J. Y. Seong, Y. C. Bae, and Y. K. Sun, J. Power Sources, 157, 733 (2006) https://doi.org/10.1016/j.jpowsour.2006.01.008
  14. J. M. Prausnitz, R. N. Lichtenthaler, and E. G. D. Azevedo, Molecular Thermodynamics of Fluid Phase Equilibria, Prentice- Hall, Englewood Cliffs, NJ, 1986
  15. P. E. Stein, A. G. W. Leslie, J. T. Finch, W. G. Turnell, P. J. McLaughlin, and R. W. Carrell, Nature, 347, 99 (1990)
  16. C. C. F. Blake, D. F. Koenig, G. A. Mair, A. C. T. North, D. C. Phillips, and V. R. Sarma, Nature, 206, 757 (1965)