Effect of Neutral Solvent on the Phase Behavior of Polystyrene-block-Poly(n-butyl methacrylate) Copolymers

  • Li, Chaoxu (National Creative Research Initiative Center for Block Copolymer Self-Assembly, Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Li, Guang-Hua (National Creative Research Initiative Center for Block Copolymer Self-Assembly, Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Moon, Hong-Chul (National Creative Research Initiative Center for Block Copolymer Self-Assembly, Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Lee, Dong-Hyun (National Creative Research Initiative Center for Block Copolymer Self-Assembly, Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Kim, Jin-Kon (National Creative Research Initiative Center for Block Copolymer Self-Assembly, Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Cho, Jun-Han (Department of Polymer Science and Engineering, Dankook University, Hyperstructured Organic Materials Research Center)
  • Published : 2007.12.31

Abstract

The effects of a neutral solvent of dioctyl phthalate (DOP) on the phase behavior of symmetric polystyrene-block-poly(n-butyl methacrylate) copolymers (PS-b-PnBMA) were assessed herein. Closed-loop phase behavior with a lower disorder-to-order transition (LDOT) and an upper order-to-disorder transition (UODT) was observed for PS-b-PnBMA/DOP solution when the quantity of DOP was carefully controlled. When the molecular weight of PS-b-PnBMA became larger, the LDOT did not appreciably change at smaller quantities of DOP. With larger quantities of DOP, the reduction in the UODT is greater than the increase in the LDOT. This behavior is discussed in accordance with a molecular theory predicated on a compressible random-phase approximation.

Keywords

References

  1. T. Hashimoto, in Thermoplastic Elastomer, Second Edition, G. Holden, N. R. Legge, R. Quirk, and H. E. Schroeder, Eds., Hanser, Munich, 1996
  2. B. K. Yoon, W. Hwang, Y. J. Park, J. Hwang, C. Park, and J. Chang, Macromol. Res., 13, 435 (2005) https://doi.org/10.1007/BF03218477
  3. T. Hayakawa, T. Kouketsu, M. Kakimoto, H. Yokoyama, and S. Horiuchi, Macromol. Res., 14, 52 (2006) https://doi.org/10.1007/BF03219068
  4. T. P. Russell, T. E. Karis, Y. Gallot, and A. M. Mayes, Nature, 368, 729 (1994)
  5. A.-V. G. Ruzette, P. Banerjee, A. M. Mayes, M. Pollard, T. P. Russell, R. Jerome, T. Slawecki, R. Hjelm, and P. Thiyagarajan, Macromolecules, 31, 8509 (1998)
  6. A.-V. G. Ruzette, A. M. Mayes, M. Pollard, T. P. Russell, and B. Hammouda, Macromolecules, 36, 3351 (2003) https://doi.org/10.1021/ma021394c
  7. T. Hashimoto, H. Hasegawa, T. Hashimot, H. Katayama, M. Kamigaito, M. Sawamoto, and M. Imai, Macromolecules, 30, 6819 (1997)
  8. R. Weidisch, M. Stamm, D. W. Schubert, M. Arnold, H. Budde, and S. Horing, Macromolecules, 32, 3405 (1999)
  9. U. Jeong, D. Y. Ryu, and J. K. Kim, Macromolecules, 36, 8913 (2003) https://doi.org/10.1021/ma034714g
  10. E. Kim, D. J. Lee, J. K. Kim, and J. Cho, Macromolecules, 39, 8747 (2006) https://doi.org/10.1021/ma0617567
  11. D. Y. Ryu, U. Jeong, J. K. Kim, and T. P. Russell, Nature Mater., 1, 114 (2002) https://doi.org/10.1038/nmat723
  12. D. Y. Ryu, M. S. Park, S. H. Chae, J. Jang, and J. K. Kim, Macromolecules, 35, 8676 (2002) https://doi.org/10.1021/ma011278u
  13. D. Y. Ryu, U. Jeong, D. H. Lee, J. Kim, H. S. Youn, and J. K. Kim, Macromolecules, 36, 2894 (2003) https://doi.org/10.1021/ma026002g
  14. D. Y. Ryu, D. J. Lee, J. K. Kim, K. A. Lavery, T. P. Russell, Y. S. Han, B. S. Seong, C. H. Lee, and P. Thiyagarajan, Phys. Rev. Lett., 90, 235501 (2003) https://doi.org/10.1103/PhysRevLett.90.235501
  15. D. Y. Ryu, D. H. Lee, U. Jeong, S.-H. Yun, S. Park, K. Kwon, B.-H. Sohn, T. Chang, and J. K. Kim, Macromolecules, 37, 3717 (2004) https://doi.org/10.1021/ma049746y
  16. H. J. Kim, S. B. Kim, J. K. Kim, Y. M. Jung, D. Y. Ryu, K. A. Lavery, and T. P. Russell, Macromolecules, 39, 408 (2006) https://doi.org/10.1021/ma052259d
  17. C. Li, G. H. Li, D. H. Lee, and J. K. Kim, Polymer, 48, 4235 (2007) https://doi.org/10.1016/j.polymer.2007.05.003
  18. C. Li, D. H. Lee, J. K. Kim, D. Y. Ryu, and T. P. Russell, Macromolecules, 39, 5926 (2006) https://doi.org/10.1021/ma0610055
  19. K. A. Lavery, J. D. Sievert, J. J. Watkins, T. P. Russell, D. Y. Ryu, and J. K. Kim, Macromolecules, 39, 6580 (2006) https://doi.org/10.1021/ma060329q
  20. C. H. Lee, H. Sairo, G. Goizueta, and T. Inoue, Macromolecules, 29, 4274 (1996)
  21. H. Hu, C. Chong, A. He, C. Zhang, G. Fan, J.-Y. Dong, and C. C. Han, Macromol. Rapid Commun., 26, 973 (2005) https://doi.org/10.1002/marc.200500182
  22. J. Dudowicz and K. F. Freed, Macromolecules, 24, 5076 (1991)
  23. J. Dudowicz and K. F. Freed, Macromolecules, 26, 213 (1993)
  24. J. Dudowicz, K. F. Freed, and J. F. Douglas, Phys. Rev. Letts., 88, 095503 (2002)
  25. T. Hino and J. M. Prausnitz, Macromolecules, 31, 2636 (1998)
  26. A.-V. G. Ruzette, P. Banerjee, A. M. Mayers, and T. P. Russell, J. Chem. Phys., 114, 8205 (2001)
  27. J. Cho, Macromolecules, 34, 1001 (2001) https://doi.org/10.1021/ma002404h
  28. J. Cho, Macromolecules, 37, 10101 (2004) https://doi.org/10.1021/ma0483569
  29. J. Cho and Y. K. Kwon, J. Polym. Sci. Polym. Phys., 41, 1889 (2003) https://doi.org/10.1002/polb.10560
  30. I. C. Sanchez and C. G. Panayiotou, in Modeling Excess Gibbs Energy in Models for Thermodynamic and Phase Equilibria Calculations, S. I. Sandler, Ed., Marcel Dekker, New York, 1994, pp 1-86
  31. D. Y. Ryu, C. Shin, J. Cho, D. H. Lee, J. K. Kim, K. A. Lavery, and T. P. Russell, Macromolecules, 40, 7644 (2007) https://doi.org/10.1021/ma070754z
  32. J. J. Watkins, G. D. Brown, S. RamachandraRao, M. A. Pollard, and T. P. Russell, Macromolecules, 32, 7737 (1999)
  33. J. Bolze, J. Kim, J. Huang, S. Rah, H. S. Youn, B. Lee, T. J. Shin, and M. Ree, Macromol. Res., 10, 2 (2002) https://doi.org/10.1007/BF03218282
  34. N. P. Balsara, D. Perahia, C. R. Safinya, M. Tirrell, and T. P. Lodge, Macromolecules, 25, 3896 (1992)
  35. N. P. Balsara, H. J. Dai, P. K. Kesani, B. A. Garatz, and B. Hammouda, Macromolecules, 27, 7406 (1994)
  36. H. Fischer, R. Weidisch, M. Stamm, H. Budde, and S. Horing, Colloid Polym. Sci., 278, 1019 (2000) https://doi.org/10.1007/s003960000363
  37. M. Pollard, T. P. Russell, A.-V. G. Ruzette, A. M. Mayers, and Y. Gallot, Macromolecules, 31, 6493 (1998)
  38. J. Cho, Polymer, 48, 429 (2007) https://doi.org/10.1016/j.polymer.2006.11.056
  39. T. P. Lodge, K. J. Hanley, B. Pudil, and V. Alahapperuma, Macromolecules, 36, 816 (2003) https://doi.org/10.1021/ma0209601
  40. B. D. Vogt, V. S. RamachandraRao, R. R. Gupta, K. A. Lavery, T. J. Francis, T. P. Russell, and J. J. Watkins, Macromolecules, 36, 4029 (2003) https://doi.org/10.1021/ma0300544
  41. B. D. Vogt and J. J. Watkins, Macromolecules, 35, 4056 (2002) https://doi.org/10.1021/ma011278u
  42. G. H. Fredrickson and E. Helfand, J. Chem. Phys., 87, 697 (1987)