Protective Effect of Methanol Extract of Swietenia macrophylla Seeds on Oxidative States Associated with Streptozotocin Induced Diabetic Rats

  • Maiti, Anup (Pharmacognosy and Phytotherapy Research Laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University) ;
  • Dewanjee, Saikat (Pharmacognosy and Phytotherapy Research Laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University) ;
  • Kundu, Mintu (Pharmacognosy and Phytotherapy Research Laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University) ;
  • Mandal, Subhash C. (Pharmacognosy and Phytotherapy Research Laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University)
  • Published : 2007.12.31

Abstract

The methanol extract of seeds of Swietenia macrophylla King. (MESM) was studied for its antidiabetic activity in streptozotocin induced diabetic rats. It was principally aimed to correlate the efficacious role of MESM on reduction of oxidative state associated with diabetes. The extract was found to be potent antidiabetic evidenced by significant reduction of blood glucose level in diabetic rats (47.96% reduction of blood glucose level, at 300 mg/kg, on day 10). It was found that, MESM at 300 mg/kg, significantly decreased TBARS (35.03 and 22.22%) whilst increased GSH (86.75 and 31.45%), SOD (93.05 and 45.88%) and CAT (56.99 and 68.46%) levels in liver and kidney respectively in diabetic rats.

Keywords

References

  1. Anuradha, C.V. and Selvam, R., Effect of oral methionine on tissue lipid peroxidation and antioxidants in alloxan induced diabetic rats. J. Nutr. Biochem. 4, 212-217 (1993) https://doi.org/10.1016/0955-2863(93)90054-Z
  2. Ceriello, A., Quatro, A., and Giugliano, D., New insights on non enzymatic glycosylation may lead to therapeutic approaches for the prevention of the diabetic complications. Diabet. Med. 9, 297-299 (1992) https://doi.org/10.1111/j.1464-5491.1992.tb01783.x
  3. Ellman, G.L., Tissue sulphydryl groups. Arch. Biochem. Biophys. 82, 70- 77 (1959) https://doi.org/10.1016/0003-9861(59)90090-6
  4. Feilled, C., Rock, E., Coudray, C., Grzelkowska, K., Azais- Brasco, V., Darduct, D., and Mazeer, A., Lipid peroxidation and antioxidant status in experimental diabetes. Clin. Chim. Acta. 284, 31-43 (1999) https://doi.org/10.1016/S0009-8981(99)00046-7
  5. Fraga, C.G., Leibovita, B.E., and Toppel, A.L., Lipid peroxidation measured as TBARS in tissue slices: Characterisation and comparison with homogenates and microsomes. Free Radic. Biol. Med. 4, 155- 161 (1988) https://doi.org/10.1016/0891-5849(88)90023-8
  6. Guevera, A.P., Apilado, A., Sakarai, H., Kozuka, M., and Tokunda, H., Anti-inflammatory, antimutagenecity and antitumor activity of mahagony seeds Swietenia macrophylla (Meliaceae). Phill. J. Sc. 125, 271-278 (1996)
  7. Guha Sircar, S.S.G., and Chakraborty, T., Tetranortriterpenoid from Swietenia macrophylla. J. Ind. Chem. Soc. 28, 207 (1951)
  8. Huang, H. and Manton, K.G., The role of oxidative damage in mitrochondri during aging, a review. Front Biosciences 9, 1100-1117 (2004) https://doi.org/10.2741/1298
  9. Hughes, K., Choo, M., Kuperan, P., and Ong, C.N., Cardiovascular risk factors in non-insulin dependent diabetes compared to non diabetic controls: A population Based survey among Asians in Singapore. Atherosclerosis 136, 25-31 (1998) https://doi.org/10.1016/S0021-9150(97)00180-9
  10. Inouye. M., Hashimoto, H., Mio, T., and Sumino, K., Levels of lipid peroxidation product and glycated hemoglobin A1C in the erythrocytes of diabetic patients. Clini. Chimi. Acta 276, 163-172 (1998) https://doi.org/10.1016/S0009-8981(98)00112-0
  11. Kakkar, P., Das, B., and Visvanathan, P.N., A modified spectrophotometric assay of superoxide dismutase. Ind. J. Biochem. Biophys. 2, 130-132 (1984)
  12. Karunanayake, E.H., Hearse, D.J., and Mellows, G., The synthesis of $^{14}C$ Streptozotocin and its distribution and excretion in rat. Biochem. J. 142, 673-685 (1974) https://doi.org/10.1042/bj1420673
  13. Leelavinothan, P. and Muniappan, L., protective role of Scoparia dulcis plant extract on brain antioxidant status and lipidperoxidation in stz diabetic male wistar rats. BMC Complementary and Alternative Medicine 4, 16-23 (2004) https://doi.org/10.1186/1472-6882-4-16
  14. Maiti, A., Bhattacharya, P., and Mandal, S.C., Effect of Swietenia macrophylla seeds on normal and alloxan induced diabetic rats. Oriental Pharmacy on Experimantal Medicine (Accepted, will be published on 7(4), 2007
  15. Mandal, S.C., Mukharjee, P.K., Saha, K., Das, J., Pal, M., and Saha, B.P., Hypoglycaemic activity of Ficus racemosa L. (Moraceae) leaves in streptozotocin induced Diabetic Rats. Nat. Prod. Sci. 3(1), 38-41 (1997)
  16. Maxwell, S.R.J., Thomson, H., Sander, D., Leguem, C, Bastex, A.M., Throp, G.H.G., Jones, A.F., and Bannette, A.M., Poor glycemic control is associated with reduced serum free radical scavenging (antioxidant) activity in non-insulin dependent diabetic mellitus. Annal. Clin. Biochem. 34, 638-644 (1999)
  17. Meneghini, R., Genotoxicity of active oxygen species in mammalian cells. Mutat. Res. 195, 215-230 (1988) https://doi.org/10.1016/0165-1110(88)90001-2
  18. Mootoo, B.S., Allisha, A., Motilal, R., Pingal, R., Ramlal, A., Khan, A., Reynolds, W.F., and McLean, S., Limonoids from Swietenia macrophylla and S. aubrevilleana. J. Nat. Prod. 62(11), 1514-1517 (1999) https://doi.org/10.1021/np990199x
  19. Rakieten, N., Rakieten, M.L., and Nadkarni, M.V., Studies on the diabetogenic action of streptozotocin. Cancer Chemother. Rep. 29, 91- 98 (1963)
  20. Rastogi, R.P. and Mehrotra, B.N., Compendium of Indian Medicinal Plants. New Delhi, India, 1990
  21. Scopplola, A., Montechi, F.R., Mezinger, G., and Lala, A., Urinary mavalonate excretion rate in Type-2 diabetes: role of metabolic control. Atherosclerosis 156, 357-361 (2001) https://doi.org/10.1016/S0021-9150(00)00660-2
  22. Searle, A.J. and Wilson, R., Glutathione peroxide effect of superoxide, hydroxyl and bromine free radicals on enzyme activity. Int. J. Radiat. Bio. 37, 213-217 (1980) https://doi.org/10.1080/09553008014550261
  23. Shigetoshi, K., Lamik, M., Tohru, K., and Hisao, E., Constituents of the seeds of S. mahagony Jacq, isolation, structure and $^{1}H$ and $^{13}C$ NMR signal Assignments of new tetranortriterpenoids related to swietenine and swietenolide. Chem. Pharm. Bull. 38(3), 639-651 (1990) https://doi.org/10.1248/cpb.38.639
  24. Siddque, M., Sun, Y., Lin, J.C., and Chien, Y.W., Facilitated transdermal transport of insulin. J. Pharm. Sci. 76, 341-345 (1987) https://doi.org/10.1002/jps.2600760416
  25. Sinha, K.A., Colorimetric assay of catalase. Annal. Biochem. 47, 389-394 (1972) https://doi.org/10.1016/0003-2697(72)90132-7
  26. Slater, T.F., Free-radical mechanisms in tissue injury. J. Biochem. 222, 1- 15 (1984) https://doi.org/10.1042/bj2220001
  27. Uchimara, K., Nagasaka, A., Hayashi, R., Makino, M., Nagata, M., Kakizawa, H., Kobayashi, T., Fugiwara, K., Kato, T., Iwase, K., Shinohara, R., Kato, K., and Itoch, M., Changes in superoxide dismutase activities and concentrations and mycloperoxidase activities in leukocytes from patients with diabetes mellitus. J. Diabat. Complications 13, 264-270 (1999) https://doi.org/10.1016/S1056-8727(99)00053-7
  28. Ugochukwu, N.H., Babady, N.E., Cobourn, M., and Gasset, S.R., The effects of Gangronema latifolium extracts on serum lipid profile and oxidative stress in hepatocytes of diabetic rats. J. Biosci. 28, 1-5 (2003) https://doi.org/10.1007/BF02970124
  29. Wolf, S.P., Jiang, Z.Y., and Shunt, J.U., Protein glycation and oxidative stress in diabetic mellitus and aging. Free Rad. Biol. Mol. 10, 339-352 (1991) https://doi.org/10.1016/0891-5849(91)90040-A