References
- Adams, D.O. and Nathan, C.F., Molecular mechanism in tumor cell killing by activated macrophages. Immunol. Today. 4, 166-177 (1983) https://doi.org/10.1016/0167-5699(83)90005-1
- Dong, C., Davis, R.J., and Flavell, R.A., MAP kinases in the immune response. Annu. Rev. Immunol . 20, 55-72 (2002) https://doi.org/10.1146/annurev.immunol.20.091301.131133
-
Di Marzio, P., Puddu, P., Conti, L., Belardelli, F., and Gessani, S., Interferon
$\gamma$ upregulates its own gene expression in mouse peritoneal macrophages. J. Exp. Med. 179, 1731-1736 (1994) https://doi.org/10.1084/jem.179.5.1731 - Dumont, F.J., Staruch, M.J., Fischer, P., DaSilva, C., and Camacho, R., Inhibition of T cell activation by pharmacologic disruption of the MEK1/ERK MAP kinase or calcineurin signaling pathways results in differential modulation of cytokine production, J. Immunol. 160, 2579-2589 (1998)
- Gessani, S. and Belardelli, F., IFN-gamma expression in macrophages and its possible biological significance. Cytokine Growth Factor Rev. 9, 117-123 (1998) https://doi.org/10.1016/S1359-6101(98)00007-0
- Ishida, Y., Kondo, T., Takayasu, T., Iwakura, Y., and Mukaida, N., The essential involvement of cross-talk between IFN-a and TGF-a in the skin wound-healing process. J. Immunol. 172, 1848-1855 (2004) https://doi.org/10.4049/jimmunol.172.3.1848
- Key, M.E., Hoyer, L., Bucana, C., and Hannajr, M.G., Mechanism of macrophage mediated tumor cytolysis, Adv. Exp. Med. Biol. 146, 265- 310 (1982)
- Kyriakis J.M. and Avruch, J., Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation, Physiol. Rev. 81, 807-869 (2001) https://doi.org/10.1152/physrev.2001.81.2.807
- MacMicking, J., Xie, Q.W., and Nathan, C., Nitric oxide and macrophage function. Annu Rev Immunol. 15, 323-350 (1997) https://doi.org/10.1146/annurev.immunol.15.1.323
-
Munder, M., Mallo, M., Eichmann, K., and Modolell, M., Murine macrophages secret interferon
$\gamma$ upon combined stimulation with IL- 12 and IL-18: a novel pathway of autocrine macrophage activation. J. Ex. Med. 187, 2103-2108 (1998) https://doi.org/10.1084/jem.187.12.2103 - Moncada, S., Plamer, R.M.J., and Higgs, E.A., Nitric oxide: physiology, pathophysiology, and Pharmacology. Pharmacol Rev. 43, 109-142 (1991)
- Morikawa, K., Kikuchi, Y., Abe, S., Yamazaki, M., and Mizuno, D., Early cellular responses in the peritoneal cavity of mice to antitumor immunomodulators. Gann. 75, 370-378 (1984)
- Nathan, C., Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051-3064 (1992) https://doi.org/10.1096/fasebj.6.12.1381691
- Rao, K.M., Meighan, T., and Bowman, K., Role of mitogen-activated protein kinase activation in the production of inflammatory mediators: differences between primary rat alveolar macrophages and macrophage cell lines, J. Toxicol. Environ. Health 65, 757-768 (2002) https://doi.org/10.1080/00984100290071027
- Rao, K.M., MAP kinase activation in macrophages, J. Leukoc Biol. 69, 3- 10 (2001)
- Swantek, J.L., Cobb, M.H., and Geppert, T.D., Jun N-terminal kinase/ stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha (TNFalpha) translation: glucocorticoids inhibit TNF-alpha translation by blocking JNK/SAPK, Mol. Cell Biol. 17, 6274-6282 (1997) https://doi.org/10.1128/MCB.17.11.6274
- Yoon, Y.D., Han, S.B., Kang, J.S., Lee, C.W., Park, S.K., Lee, H.S., Kang, J.S., and Kim, J.S., Toll-like receptor 4-independent activation of macrophages by polysaccharide isolated from the radix of platycodon grandiflorum. Int. Immunopharmacol. 3, 1873-1882 (2003) https://doi.org/10.1016/j.intimp.2003.09.005