DOI QR코드

DOI QR Code

CdSe Quantum Dots Sensitized TiO2 Electrodes for Photovoltaic Cells

  • Yum, Jun-Ho (Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of basic Sciences, Swiss Federal Institute of Technology) ;
  • Choi, Sang-Hyun (School of Chemical Engineering and Research Center for Energy Conversion and Storage, Seoul National University) ;
  • Kim, Seok-Soon (Department of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Kim, Dong-Yu (Department of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Sung, Yung-Eun (School of Chemical Engineering and Research Center for Energy Conversion and Storage, Seoul National University)
  • Published : 2007.11.28

Abstract

The electronic properties of quantum dots can be tuned by changing the size of particles without any change in their chemical composition. CdSe quantum dots, the sizes of which were controlled by changing the concentrations of Cd and Se precursors, were adsorbed on $TiO_2$ photoelectrodes and used as sensitizers for photovoltaic cells. For applications of CdSe quantum dot as sensitizers, $CdSe/TiO_2$ films on conducting glass were employed in a sandwich-type cell that incorporated a platinum-coated conductive glass and an electrolyte consisting of an $I^-/I_3^-$ redox. The fill factor (FF) and efficiency for energy conversion ($\c{c}$) of the photovoltaic cell was 62 % and 0.32 %, respectively.

Keywords

References

  1. B. O'Regan and M. Gratzel, 'A low-cost, high efficiency solar cell based on dye-sensitized colloidal $TiO_2$ films' Nature, 353, 737 (1991) https://doi.org/10.1038/353737a0
  2. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry Backer, E. Mueller, R Liska, N. Vlachopoulos, and M. Gratzel, 'Conversion of Light to Electricity by $cis-X_2Bis$(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) Charge-Transfer Sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline $TiO_2$ Electrodes' J. Am. Chem. Soc., 115,6382(1993) https://doi.org/10.1021/ja00067a063
  3. C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, 'Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications' J. Am. Ceram. Soc., 80, 3157(1997) https://doi.org/10.1111/j.1151-2916.1997.tb03245.x
  4. R. Vogel, P. Hoyer, and H. Weller, 'Quantum-Sized PbS, CdS, $Ag_2S$, $Sb_2S_3$, and $Bi_2S_3$ Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors' J. Phys. Chem., 98, 3183(1994) https://doi.org/10.1021/j100063a022
  5. R. Plass, S. Pelet, J. Krueger, M. Gratzel, and U. Bach, 'Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells' J. Phys. Chem. B, 106, 7578 (2002) https://doi.org/10.1021/jp020453l
  6. L. M. Peter, K.G. U. Wijayantha, D. J. Riley, and J. P. Waggett, 'Band-Edge Tuning in Self-Assembled Layers of $Bi_2S_3$ Nanoparticles Used To Photosensitized Nanocrystalline $TiO_2$' J. Phys. Chem. B, 107, 8378, (2003) https://doi.org/10.1021/jp030334l
  7. P. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank, and A. J. Nozik, 'Nanocrystalline $TiO_2$ Solar Cells Sensitized with InAs Quantum Dots' J. Phys. Chem. B, 110, 25451, (2006) https://doi.org/10.1021/jp064817b
  8. A. Zaban, O. I. Miaeiae, B. A.Gregg, and A. J. Nozik, 'Photo-sensitization of Nanoporous $TiO_2$ Electrodes with InP Quantum Dots' Langmuir, 14,3153(1998) https://doi.org/10.1021/la9713863
  9. C. B. Murray, D. J. Norris, and M. G. Bawendi, 'Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites' J. Am. Chem. Soc., 115(19), 8706 (1993) https://doi.org/10.1021/ja00072a025
  10. M. Danek, K. F. Jensen, C. B. Murray, and M. G. Bawendi, 'Synthesis of Luminescent Thin-Film CdSe/ZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated with an Overlayer of ZnSe' Chem. Mater., 8(1), 173 (1996) https://doi.org/10.1021/cm9503137
  11. M. A. Hines and P. Guyot-Sionnest, 'Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals' J. Phys. Chem., 100, 468 (1996) https://doi.org/10.1021/jp9530562
  12. X. Peng, J. Wickham, and A. P. Alivisatos, 'Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: 'Focusing' of Size Distributions' J. Am. Chem. Soc., 120(21), 5343 (1998) https://doi.org/10.1021/ja9805425
  13. S. -S. Kim, J. -H. Yum, and Y. -E. Sung, 'Improved performance of a dye-sensitized solar cell using a $TiO_2$/ZnO/Eosin Y electrode' Sol. Energy Mater. Sol. Cells, 79,495 (2003) https://doi.org/10.1016/S0927-0248(03)00065-5
  14. G. Timp, 'Nanotechnology', 264, Springer-Verlag, New York (1998)
  15. D. R. Lide, 'CRC Handbook of Chemistry and Physics 81st edition', 12-105, CRC Press, Boca Raton
  16. K. Kalyanasundaram and M. Gratzel, 'Applications of functionalized transition metal complexes in photonic and optoelectronic devices' Coord. Chem. Rev., 177. 347 (1998) https://doi.org/10.1016/S0010-8545(98)00189-1
  17. J. van de Lagemaat, N. -G. Park, and A. J. Frank, 'Influence of Electrical Potential Distribution, Charge Transport, and Recombination on the Photopotential and Photocurrent Conversion Efficiency of Dye-Sensitized Nanocrystalline $TiO_2$ Solar Cells: A Study by Electrical Impedance and Optical Modulation' J. Phys. Chem. B, 104(9), 2044 (2000) https://doi.org/10.1021/jp993172v

Cited by

  1. Decrease of back recombination rate in CdS quantum dots sensitized solar cells using reduced graphene oxide vol.24, pp.4, 2015, https://doi.org/10.1088/1674-1056/24/4/047205
  2. Photophysical properties of hybrid complexes of quantum dots and reaction centers of purple photosynthetic bacteria Rhodobacter sphaeroides adsorbed on crystalline mesoporous TiO2 films vol.8, pp.7-8, 2013, https://doi.org/10.1134/S1995078013040095
  3. One-step synthesis of TiO2/CdS nanocomposites by using microwave irradiation of a TiO2 + Cd2+-mercaptopropionic acid aqueous solution vol.64, pp.3, 2014, https://doi.org/10.3938/jkps.64.436
  4. Limits and possible solutions in quantum dot organic solar cells vol.82, 2018, https://doi.org/10.1016/j.rser.2017.07.001
  5. Colloidal quantum dot solar cells vol.85, pp.6, 2011, https://doi.org/10.1016/j.solener.2011.02.005