DOI QR코드

DOI QR Code

압축성이 큰 지반에서 순간변위(충격)시험 해석을 위한 선형 커브피팅법(Linear Curve Fitting Methods)의 적용

Application of Linear Curve Fitting Methods for Slug Test Analysis in Compressible Aquifer

  • 최항석 (고려대학교 건축사회환경공학과) ;
  • 이철호 (고려대학교 건축사회환경공학과) ;
  • 웽텐바오 (고려대학교 건축사회환경공학과)
  • Choi, Hang-Seok (Dept. of Civil, Environ, and Architectural Engrg., Korea University) ;
  • Lee, Chul-Ho (Dept. of Civil, Environ, and Architectural Engrg., Korea University) ;
  • Nguyen, The Bao (Dept. of Civil, Environ, and Architectural Engrg., Korea University)
  • 발행 : 2007.11.30

초록

Hvorslev법이나 Bouwer and Rice법과 같은 선형 커브피팅법은 대수층의 현장 투수계수를 구하기 위해 실시하는 순간변위시험 혹은 순간충격시험(slug test) 결과를 효과적이고 간편하게 해석하도록 한다. 그러나, 대수층의 압축성이 클 경우, 순간변위시험의 결과가 반대수 그래프에서 선형적이지 않고 상향으로 오목한 곡선 형태를 갖게 되므로, 대수층의 압축성을 무시하는 기존의 선형 커브피팅법은 이런 경우에 그대로 적용하기 어렵다. 본 논문에서는 두 선형 커브피팅법을 부분 관통된 우물의 경우에 대하여 비교 분석하여 대부분의 경우에 Hvorslev법이 Bouwer and Rice법에 비하여 과다하게 현장 투수계수를 산정함을 보였다. 또한, 각기 다른 커브피팅 방법에 따른 순간변위시험 해석결과를 무차원 압축 매게변수(${\alpha}$)의 범위 0.001에서 1까지에 대하여 비교 분석하였다. 마지막으로, 압축성이 큰 대수층의 순간 변위시험 해석을 위하여 Chirlin의 방법을 부분 관통된 우물의 형상을 고려할 수 있도록 확장하여 수정된 선형 커브피팅법을 제시하였다. 제안된 방법의 현장 적용성을 검토하기 위해 빙적토 대수층에서 실시된 순간 변위시험 결과를 이용하여 사례분석을 하였다.

The linear curve fitting methods such as the Hvorslev method and the Bouwer and Rice method provide a rapid and simple means to analyze slug test data for estimating in-situ hydraulic conductivity (k) of geologic material. However, when analyzing a slug test in a relatively compressible aquifer, these methods have difficulties in fitting a straight line to the semi-logarithmic plot of the test data that shows a concave-upward curvature because the linear curve fitting methods ignore the role of the compressibility or specific storage ($S_s$) of an aquifer. The comparison of the Hvorslev method and the Bouwer and Rice method is made far a partially-penetrating well geometry to show analytically that the Hvorslev method estimates higher hydraulic conductivity than the Bouwer and Rice method except that the well intake section locates very close to the bottom of the aquifer. The effect of fitting a straight line to the slug test data is evaluated along with the dimensionless compressibility parameter (${\alpha}$) ranging from 0.001 to 1. A modified linear curve fitting method that is expanded from Chirlin's approach to the case of a partially penetrating well with the basic-time-lag fitting method is introduced. A case study for a compressible glacial till is made to verify the proposed method by comparing with a type curve method (KGS method).

키워드

참고문헌

  1. Bouwer, H. (1989), 'The Bouwer and Rice Slug Test-An Update', Ground Water, Vo1.1.27, No.3, pp.304-309
  2. Bouwer, H., and Rice, R. C. (1976), 'A Slug Test for Determining Hydraulic Conductivity of Unconfmed Aquifer with Completely or Partially Penetrating Wells', Water Resource Research, Vo1.12, No.3, pp.423-428 https://doi.org/10.1029/WR012i003p00423
  3. Butler, J. J. (1996), 'Slug Tests In Situ Characterization: Some Practical Consideration', Environmental Geoscience, Vol.3, No.2, pp.154-163
  4. Butler, J. J. (1998), The Design, Performance, and Analysis of Slug Tests, Lewis Publishers
  5. Chirlin, G.R. (1989), 'A critique of the Hvorslev method for slug test analysis: The fully penetrating well', Ground Water Monitoring Review, Vo1.9, No.2, pp.130-138 https://doi.org/10.1111/j.1745-6592.1989.tb01147.x
  6. Cooper, H. H., Bredehoeft, J. D., and Papadopulos, I. S. (1967), 'Response of a Finte-diameter Well to an Instantaneous Charge of Water', Water Resource Research, Vol.3, No.1, pp.263-269 https://doi.org/10.1029/WR003i001p00263
  7. Dax, A. (1987), 'A Note on the Analysis of Slug Tests', Journal of Hydrology, Vo1.91, pp.153-177 https://doi.org/10.1016/0022-1694(87)90134-X
  8. Ferris, J. G., and Knowles, D. B. (1963), 'The Slug-injection Test for Estimating the Coefficient of Transmissibility of an Aquifer', Methods of Determining Permeability, Transmissibility, and Drawdown, US Geological Survey Water Supply Paper, pp.229-304
  9. Freeze, R. A., and Cherry, J. A. (1979), Groundwater, Prentice-Hall, Inc
  10. Herzog, B.L., R.A. Griffin, C.J. Stohr, L.R. Follmer, W.J. Morse, and W.J. Suo (1989), Investigations of failure mechanisms and migration of organic chemicals at wilsonville, Illinois, Report in Illinois State Geological Survey
  11. Hvorslev, M. J. (1951), Time Lag and Soil Permeability in Groundwater Observation, Waterways Experiment Station, Bulletin No. 36, Corps of Engineering, U.S. Army, Vicksburg, Mississippi
  12. Hyder, Z. (1994), Analysis of Slug Tests in Partially Penetrating Wells, Ph. D. Thesis, University of Kansas
  13. Hyder, Z., and Butler, J. J. (1995), 'Slug Tests in Unconfined Formations: An Assessment of the Bouwer and Rice Technique', Ground Water, Vol.33, No.1, pp.16-22 https://doi.org/10.1111/j.1745-6584.1995.tb00258.x
  14. Papadopulos, S. S., Bredehoeft, J. D., and Cooper, H. H. (1973), 'On the Analysis of Slug Test Data', Water Resource Research, Vol.9, No.4, pp.1087-1089 https://doi.org/10.1029/WR009i004p01087