DOI QR코드

DOI QR Code

Frequency Tuning of Unimorph Cantilever for Piezoelectric Energy Harvesting

주파수 조정에 따른 에너지 하베스팅용 압전 캔틸레버의 특성

  • Kim, Hyung-Chan (School of Electrical Engineering, College of Engineering, Korea Univ.) ;
  • Song, Hyun-Cheol (Thin Film Materials Research Center, Korea Institute of Science & Technology) ;
  • Jeong, Dae-Yong (Thin Film Materials Research Center, Korea Institute of Science & Technology) ;
  • Kim, Hyun-Jai (Thin Film Materials Research Center, Korea Institute of Science & Technology) ;
  • Yoon, Seok-Jin (Thin Film Materials Research Center, Korea Institute of Science & Technology) ;
  • Ju, Byeong-Kwon (School of Electrical Engineering, College of Engineering, Korea Univ.)
  • 김형찬 (고려대학교 전자전기공학과) ;
  • 송현철 (한국과학기술연구원 박막재료연구센타) ;
  • 정대용 (한국과학기술연구원 박막재료연구센타) ;
  • 김현재 (한국과학기술연구원 박막재료연구센타) ;
  • 윤석진 (한국과학기술연구원 박막재료연구센타) ;
  • 주병권 (고려대학교 전자전기공학과)
  • Published : 2007.12.31

Abstract

Piezoelectric energy harvesting from our surrounding vibration has been studied for driving the wireless sensor node. To change the vibration energy into the electric-energy efficiently, the natural frequency of cantilever needs to be adjusted to that of a vibration source. When adding 6.80g mass on the end of the fabricated cantilever, a natural frequency shifts from 136 Hz into 49.5 Hz. In addition, electro-mechanical coupling factor increased from 10.20% to 11.90% and resulted in the 1.18 times increase of maximum output power.

Keywords

References

  1. J. M. Rabaey, M. J. Ammer, J. L. da Silva Jr, D. Patel, and S. Roundy, Comput., 33(7), 42 (2000) https://doi.org/10.1109/2.869369
  2. P. Smalser, U.S. Patent, 5703474 (1997)
  3. S. Roundy, P. K Wright, and J. M. Rabaey, Energy Scavenging for Wireless Sensor Networks with special Focus on Vibrations, Kluwer Academic Pub., Norwell (2004)
  4. K. Ren, Y. Liu, X. Geng, H. F. Hofmann, and Q. Zhang, IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 53(3), 631 (2006) https://doi.org/10.1109/TUFFC.2006.1610572
  5. H. W. Kim, A. Batra, S. Priya, K. Uchino, D. Markley, R. E. Newnham, and H. F. Hofmann, Jpn. J. Appl. Phys., 43(9), 6178 (2004) https://doi.org/10.1143/JJAP.43.6178
  6. G. K. Ottman, H. F. Hofmann, and G. A. Lesieutre, IEEE Trans. Power Electron., 18(2), 696 (2003) https://doi.org/10.1109/TPEL.2003.809379
  7. K. Uchino and J. R. Giniewicz, Micromechatronics,Marcel Dekker, Inc., New York, (2003)
  8. H. C. Kim, D. Y. Jeong, S. J. Yoon and H. J. Kim, Kor. J. Mater. Res., 17(2), 121 (2007) https://doi.org/10.3740/MRSK.2007.17.2.121
  9. S. Roundy, P K Wright, Smart Mater. Struct. 13. 1131 (2004) https://doi.org/10.1088/0964-1726/13/5/018
  10. S. Roundy, E. S. Leland, J. Baker, E. Carleton, E.Reilly, E. Lai, B. Otis, J. M. Rabaey, P. K. Wright and V.Sundararajan, IEEE Pervasive Computing 1, 28-36 (2005) https://doi.org/10.1109/MPRV.2005.14
  11. H. B. Fang, J. Q. Liu, Z. Y. Xu, L. Dong, D. Chen, B. C.Cai, Y. Liu, CHIN. PHYS. LETT. 23(3), 732 (2006) https://doi.org/10.1088/0256-307X/23/3/057
  12. R. D. Blevins, Formulas for natural frequency and more shape.Krieger publishing company, Malabar, Florida (2001).
  13. Z. Y. Cheng, T. B. Xu, Q. Zhang, R. Meyer Jr, D. Van Tol,J. Hughes, IEEE Trans. Ultrason. Ferroelect. Freq. Contr.,49(9), 1312 (2002) https://doi.org/10.1109/TUFFC.2002.1041548
  14. S. Roundy, Energy Scavenging for Wireless Sensor Nodeswith a Focus on Vibration to Electricity Conversion, Ph.D.Dissertation, The University of California, Berkeley (2003)
  15. C. H. Park, J. Sound and Vibration, 268, 115 (2003) https://doi.org/10.1016/S0022-460X(02)01491-8
  16. Y. Liu, K. L. Ren, Hofmann H. F, Q. Zhang, IEEE Trans.Ultrason. Ferroelect. Freq. Contr., 52(12), 2411 (2005) https://doi.org/10.1109/TUFFC.2005.1563285

Cited by

  1. Energy Harvesting Strategy Using Piezoelectric Element Driven by Vibration Method vol.02, pp.02, 2010, https://doi.org/10.4236/wsn.2010.22014