DOI QR코드

DOI QR Code

A Study on the Antioxidant Activity of Hae-Songi Mushroom(Hypsizigus marmoreus) Hot Water Extracts

해송이 버섯 열수 추출물의 항산화 효과에 관한 연구

  • Xu, Xiao-Mei (Faculty of Bioscience and Technology and Department of Marine Applied Biotechnology, Kangnung National University) ;
  • Jun, Joon-Young (Faculty of Bioscience and Technology and Department of Marine Applied Biotechnology, Kangnung National University) ;
  • Jeong, In-Hak (Faculty of Bioscience and Technology and Department of Marine Applied Biotechnology, Kangnung National University)
  • 서효매 (강릉대학교 해양생명공학부.대학원 해양응용생명공학과) ;
  • 전준영 (강릉대학교 해양생명공학부.대학원 해양응용생명공학과) ;
  • 정인학 (강릉대학교 해양생명공학부.대학원 해양응용생명공학과)
  • Published : 2007.11.30

Abstract

"Hae-Songi" mushroom is a kind of Hypsizigus marmoreus, one of the edible mushrooms. Powder and hot water extracts of the mushroom fruit-body were investigated for their proximate composition, amino acid contents, ${\beta}-glucan$ contents, total phenolic contents and antioxidant activity. The measured antioxidant activity included free radical scavenging activity against DPPH, reducing power $Fe^{2+}$ chelating ability and SOD activity. Mushroom extracts exhibited in vitro antioxidant activity. This mushroom contained high protein (29%, total amino acid contents 204.86 mg/g), free amino acids (46.53 mg/g) and ${\beta}-glucan$(0.11%). At a concentration of 1% extracts solutions (w/v) according to different extraction times, DPPH free radical-scavenging activities were found to exhibit $89%{\sim}92%$ inhibition. Positive correlations $(R^2=0.9901{\sim}0.7424)$ were found between total phenolic content in the mushroom hot water extracts and their antioxidant activity. In this study, it is demonstrated that "Hae-Songi" mushroom may possess potential for use as a health food, due to theirantioxidant capacity.

본 연구에서는 현재 생식품으로 판매되고 있는 해송이 버섯의 생리활성을 탐색하여 효용가치를 높일 수 있는 기초자료를 얻고자, 해송이 버섯의 일반적인 성분을 조사하고 열수 추출물을 제조하여 항산화 능력을 검토하였다. 그 결과 해송이 버섯은 탄수화물과 조단백질 함량이 높고 조지방 함량이 낮은 것으로 나타났다. 유리 아미노산과 구성아미노산은 각각 46.53 mg/g, 204.86 mg/g으로 나타났고, ${\beta}-glucan$ 함량은 $0.11{\pm}0.01%$로 나타났다. 해송이 버섯 열수 추출물의 총페놀함량, DPPH radical 소거능, 환원력 및 SOD 활성은 시료의 추출농도가 증가함에 따라 증가하였으나 추출시간에는 의존하지 않았다. 또한, DPPH radical 소거능은 총페놀 함량과 비슷한 경향$(R^2=0.9901{\sim}0.7424)$을 보였는데 이것은 해송이 버섯의 항산화 활성이 페놀 화합물과 관련이 깊은 것으로 사료된다. 추출물농도 1 g/100 mL에서 DPPH radical 소거능 $88.42{\sim}91.94%$로 합성항산화제(BHA 96.35%, BHT 95.64%, ascorbic acid 96.97%)와 비슷한 수준의 항산화 활성을 보여 항산화제 소재로서의 가치가 있는 것으로 나타났다.

Keywords

References

  1. Halliwell B, Gutteridge JMC. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219: 1-14 https://doi.org/10.1042/bj2190001
  2. Fridorich I. 1986. Biological effects of the superoxide radical. Arch Biophys 247: 1-11 https://doi.org/10.1016/0003-9861(86)90526-6
  3. Ames BN. 1983. Dietary carcinogens and anticarcinogens. Oxygen radical and degenerative diseases. Science 221: 1256-1264 https://doi.org/10.1126/science.6351251
  4. Kim YK. 2004. Antioxidants. Ryo Moon Gak. P. Co. Seoul, Korea. p 5-95
  5. Branen AL. 1975. Toxicology and biochemistry of butylated hydroxy anisole and butylated hydroxy toluene. J Am Oil Chem Soc 52: 59-63 https://doi.org/10.1007/BF02901825
  6. Chu YH, Chang CL, Hsu HF. 2000. Flavonoid content of several vegetables and their antioxidant activity. J Sci Food Agric 80: 561-566 https://doi.org/10.1002/(SICI)1097-0010(200004)80:5<561::AID-JSFA574>3.0.CO;2-#
  7. Amin I, Tan SH. 2002. Antioxidant activity of selected commercial seaweeds. Mal J Nutr 8: 167-177
  8. Cheung LM, Cheung PCK. 2005. Mushroom extracts with antioxidant activity against lipid peroxidation. Food Chem 89: 403-409 https://doi.org/10.1016/j.foodchem.2004.02.049
  9. Leelarungrayub N, Rattanapanone V, Chanarat N, Gebicki JM. 2006. Quantitative evaluation of the antioxidant properties of garlic and shallot preparations. Nutrition 22: 266-274 https://doi.org/10.1016/j.nut.2005.05.010
  10. Bano Z, Rajarathnam S. 1988. Pleurotus mushrooms. Part II. Chemical composition, nutritional value, post-harvest physiology, preservation, and role as human food. Crit Rev Food Sci Nutr 27: 87-158 https://doi.org/10.1080/10408398809527480
  11. Schepetkin IA, Quinn MT. 2006. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int Immunopharmacol 6: 317-333 https://doi.org/10.1016/j.intimp.2005.10.005
  12. Zhang M, Cui SW, Cheung PCK, Wang Q. 2007. Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Food Sci Tech 18: 4-19 https://doi.org/10.1016/j.tifs.2006.07.013
  13. Yang JH, Lin HC, Mau JL. 2002. Antioxidant properties of several commercial mushrooms. Food Chem 77: 229-235 https://doi.org/10.1016/S0308-8146(01)00342-9
  14. Kim HS, Ha HC, Kim TS. 2003. Research and prospects in new functional mushroom - Tremella fuciformis, Grifora frondosa and Hypsizigus marmoreus. Korean J Food Sci Ind 36: 42-46
  15. Lam SK, Ng TB. 2001. Hypsin, a novel thermostable ribosome- inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom Hypsizigus marmoreus. Biochem Biophys Res Comm 285: 1071-1075 https://doi.org/10.1006/bbrc.2001.5279
  16. Tsuchida K, Aoyagi Y, Odani S, Mita T, Isemura M. 1995. Isolation of a novel collagen-binding protein from the mushroom, Hypsizigus marmoreus, which inhibits the Lewis lung carcinoma cell adhesion to type IV collagen. J Biol Chem 270: 1481-1484 https://doi.org/10.1074/jbc.270.4.1481
  17. Chang JS, Son JK, Gao L, Oh EJ. 2004. Inhibition of cell cycle progression on HepG2 cells by hypsiziprenol $A_9$, isolated from Hypsizigus marmoreus. Cancer Lett 212: 7-14 https://doi.org/10.1016/j.canlet.2004.03.013
  18. Ikekawa T, Saitoh H, Feng W, Zhang H, Li L, Matsuzawa T. 1992. Antitumor activity of Hypsizigus marmoreus. I. Antitumor activity of extracts and polysaccharides. Chem Pharm Bull 40: 1954-1957 https://doi.org/10.1248/cpb.40.1954
  19. Matsuzawa T, Sano M, Tomita I, Saitoh H, Ohkawa M, Ikekawa T. 1998. Studies on antioxidants of Hypsizigus marmoreus. II. Effects of Hypsizigus marmoreus for antioxidants activities of tumor-bearing mice. Yakugaku Zasshi 118: 476-481 https://doi.org/10.1248/yakushi1947.118.10_476
  20. AOAC. 1990. Official Method of Analysis. 15th ed. Association of Official Analytical Chemists, Arlington. Vol 17, p 868-931
  21. Megazyme. 2007. Mixed-Linkage Beta-Glucan assay procedure. p 7-10
  22. Dewanto V, Wu X, Liu RH. 2002. Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50: 4959-4964 https://doi.org/10.1021/jf0255937
  23. Oyaizu M. 1986. Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44: 307-318 https://doi.org/10.5264/eiyogakuzashi.44.307
  24. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 26: 1199-1204 https://doi.org/10.1038/1811199a0
  25. Decker EA, Welch B. 1990. Role of ferritin as a lipid oxidation catalyst in muscle food. J Agric Food Chem 38: 674-677 https://doi.org/10.1021/jf00093a019
  26. Dojindo Laboratories. 2004. SOD assay kit-WST technical manual. p 1-4
  27. Crisan EV, Sands A. 1978. Nutritional value. In The biology and cultivation of edible mushrooms. Chang ST, Hayes WA, eds. Academic press, New York. p 137-165
  28. Mantovani MS, Bellini MF, Angeli JP, Oliveira RJ, Silva AF, Ribeiro LR. 2007. $\beta$ -Glucan in promoting health: Prevention against mutation and cancer. Mutat Res doi: 10.1016/j.mrrev.2007.07.002
  29. Manzi P, Pizzoferrato L. 2000. Beta-glucans in edible mushrooms. Food Chem 68: 315-318 https://doi.org/10.1016/S0308-8146(99)00197-1
  30. Mau JL, Lin HC, Chen CC. 2001. Non-volatile components of several medicinal mushrooms. Food Res Intl 34: 521-526 https://doi.org/10.1016/S0963-9969(01)00067-9
  31. Pyo MY, Ro IH. 1975. A study on the amino acid contents of edible mushrooms. Korean J Nutr 8: 47-59
  32. Kim HJ, Bae JT, Lee JW. 2005. Antioxidant activity and inhibitive effects on human leukemia cells of edibe mushroom extracts. Korean J Food Preserv 12: 80-85
  33. Cheung LM, Cheung PCK, Ooi VEC. 2003. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem 81: 249-255 https://doi.org/10.1016/S0308-8146(02)00419-3
  34. Kulkarni AP, Aradhya SM, Divakar S. 2004. Isolation and identification of a radical scavenging antioxidant-punicalagin from pith and carpellary membrane of pomegranate fruit. Food Chem 87: 551-557 https://doi.org/10.1016/j.foodchem.2004.01.006
  35. Kanatt SR, Chander R, Sharma A. 2007. Antioxidant potential of mint (Mentha spicata L.) in radiation-processed lamb meat. Food Chem 100: 451-458 https://doi.org/10.1016/j.foodchem.2005.09.066
  36. McCord JM, Fridovich I. 1969. Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 244: 6049-6055
  37. Kariya K, Nakamura K, Nomoto K, Matama S, Saigenji K. 1992. Mimicking of superoxide dismutase activity by protein- bound polysaccharide of Coriolus versicolor QUEI, and oxidative stress relief for cancer patients. Mol Biotecher 4: 40-46
  38. Song JH, Lee HS, Hwang JK, Chung TY, Hong SR, Park KM. 2003. Physiological activities of Phellinus ribis extracts. Korean J Food Sci Technol 35: 690-695

Cited by

  1. Antioxidant Activity of Extracts and Fractions from Aster scaber vol.41, pp.9, 2012, https://doi.org/10.3746/jkfn.2012.41.9.1197
  2. Changes in the Quality of New Cultivar Dewdrop Pine Mushroom (Lentinula edodes GNA01) Depending on the Storage Temperature vol.32, pp.5, 2016, https://doi.org/10.9724/kfcs.2016.32.5.585
  3. Food Functional Properties of Pleurotus eryngii Cultivated with Different Wavelength of LED Lights vol.19, pp.5, 2012, https://doi.org/10.11002/kjfp.2012.19.5.645
  4. Flavonoid Component Changes and Antioxidant Activities of Fermented Citrus grandis Osbeck Peel vol.38, pp.10, 2009, https://doi.org/10.3746/jkfn.2009.38.10.1310
  5. Physicochemical Characteristics and Antioxidant activity, Antimutagenicity, and Cytotoxicity of Hot-water Extract of Hericium erinaceus vol.28, pp.5, 2012, https://doi.org/10.9724/kfcs.2012.28.5.569
  6. Effect of high hydrostatic pressure (HHP) treatment on chemical and microbiological properties of Makgeolli vol.56, pp.3, 2013, https://doi.org/10.1007/s13765-013-3003-2
  7. Antioxidative Activity of Mushroom Water Extracts Fermented by Lactic Acid Bacteria vol.43, pp.1, 2014, https://doi.org/10.3746/jkfn.2014.43.1.080
  8. Quality Changes of Low Temperature Storage and Storage Period of New Cultivar Dewdrop Pine Mushroom (Lentinula edodes GNA01) and Button Mushroom (Agaricus bisporus Sing.) vol.33, pp.2, 2017, https://doi.org/10.9724/kfcs.2017.33.2.174
  9. Antioxidant Activities of Processed Deoduck (Codonopsis lanceolata) Extracts vol.42, pp.6, 2013, https://doi.org/10.3746/jkfn.2013.42.6.924
  10. Anti-obesity Effect of Hypsizigus marmoreus in High Fat-fed Mice vol.40, pp.12, 2011, https://doi.org/10.3746/jkfn.2011.40.12.1708
  11. Melanogenesis Inhibitory and Antioxidant Activities of Phellinus baumii Methanol Extract vol.41, pp.2, 2013, https://doi.org/10.4489/KJM.2013.41.2.104
  12. Antioxidant and skin whitening effects of Inonotus obliquus methanol extract vol.11, pp.2, 2013, https://doi.org/10.14480/JM.2013.11.2.099
  13. Comparison of Antioxidant Activities of Pileus and Stipe from White Beech Mushrooms (Hypsizygus marmoreus) vol.26, pp.8, 2016, https://doi.org/10.5352/JLS.2016.26.8.928
  14. Antioxidant activity and anti-obesity effect of Coprinus comatus in Zucker rat (fa/fa) vol.37, pp.1, 2014, https://doi.org/10.7853/kjvs.2014.37.1.51
  15. Isoflavone, β-Glucan Content and Antioxidant Activity of Defatted Soybean Powder by Bioconversion with Lentinula edodes vol.31, pp.5, 2016, https://doi.org/10.13103/JFHS.2016.31.5.386
  16. Component analysis and immuno-stimulating activity of Sparassis crispa stipe vol.48, pp.5, 2016, https://doi.org/10.9721/KJFST.2016.48.5.515
  17. Antioxidant Properties and Ubiquinone Contents in Different Parts of Several Commercial Mushrooms vol.41, pp.9, 2012, https://doi.org/10.3746/jkfn.2012.41.9.1235
  18. Changes in Microbial and Physicochemical Properties of Single-Brewed Makgeolli by High Hydrostatic Pressure Treatment during Fermentation vol.41, pp.8, 2012, https://doi.org/10.3746/jkfn.2012.41.8.1176
  19. Antioxidant activities of commonly used Brassica spp. sprout vegetables in Korea vol.21, pp.4, 2014, https://doi.org/10.11002/kjfp.2014.21.4.587
  20. Antioxidant and Immunological Activities of Sparassis crispa Fermented with Meyerozyma guilliermondii FM vol.45, pp.10, 2016, https://doi.org/10.3746/jkfn.2016.45.10.1398
  21. ABTS Radical Scavenging and Anti-Tumor Effects of Tricholoma matsutake Sing. (Pine Mushroom) vol.38, pp.5, 2009, https://doi.org/10.3746/jkfn.2009.38.5.555
  22. 한약재의 물 추출물이 당대사 관련 효소와 항산화 활성에 관한 연구 vol.37, pp.5, 2008, https://doi.org/10.3746/jkfn.2008.37.5.542
  23. 해송이버섯(Hypsizigus marmoreus)의 영양성분과 추출용매에 따른 암세포 생장억제 효과 vol.37, pp.11, 2007, https://doi.org/10.3746/jkfn.2008.37.11.1395
  24. 반응표면분석에 의한 해송이버섯(Hypsizigus marmoreus) 추출물 중 단백다당체의 암세포 성장억제효과 vol.37, pp.12, 2007, https://doi.org/10.3746/jkfn.2008.37.12.1647
  25. 참나무 수종별 톱밥재배에 따른 표고의 항산화 특성 vol.45, pp.2, 2017, https://doi.org/10.4489/kjm.20170015
  26. 감과피 첨가배지가 큰느타리 버섯의 항산화활성에 미치는 영향 vol.15, pp.4, 2007, https://doi.org/10.14480/jm.2017.15.4.210
  27. 다양한 조리법에 따른 버섯류의 엽산 리텐션 vol.24, pp.8, 2017, https://doi.org/10.11002/kjfp.2017.24.8.1103
  28. 건조 방법에 따른 느타리버섯과 새송이버섯 열수추출물의 항산화 활성 vol.33, pp.1, 2007, https://doi.org/10.9799/ksfan.2020.33.1.064
  29. Antioxidant activity of water-soluble polysaccharide extracts produced from perilla seed cake by enzymatic hydrolysis vol.28, pp.2, 2021, https://doi.org/10.11002/kjfp.2021.28.2.190