References
- Halliwell B, Gutteridge JMC. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219: 1-14 https://doi.org/10.1042/bj2190001
- Fridorich I. 1986. Biological effects of the superoxide radical. Arch Biophys 247: 1-11 https://doi.org/10.1016/0003-9861(86)90526-6
- Ames BN. 1983. Dietary carcinogens and anticarcinogens. Oxygen radical and degenerative diseases. Science 221: 1256-1264 https://doi.org/10.1126/science.6351251
- Kim YK. 2004. Antioxidants. Ryo Moon Gak. P. Co. Seoul, Korea. p 5-95
- Branen AL. 1975. Toxicology and biochemistry of butylated hydroxy anisole and butylated hydroxy toluene. J Am Oil Chem Soc 52: 59-63 https://doi.org/10.1007/BF02901825
- Chu YH, Chang CL, Hsu HF. 2000. Flavonoid content of several vegetables and their antioxidant activity. J Sci Food Agric 80: 561-566 https://doi.org/10.1002/(SICI)1097-0010(200004)80:5<561::AID-JSFA574>3.0.CO;2-#
- Amin I, Tan SH. 2002. Antioxidant activity of selected commercial seaweeds. Mal J Nutr 8: 167-177
- Cheung LM, Cheung PCK. 2005. Mushroom extracts with antioxidant activity against lipid peroxidation. Food Chem 89: 403-409 https://doi.org/10.1016/j.foodchem.2004.02.049
- Leelarungrayub N, Rattanapanone V, Chanarat N, Gebicki JM. 2006. Quantitative evaluation of the antioxidant properties of garlic and shallot preparations. Nutrition 22: 266-274 https://doi.org/10.1016/j.nut.2005.05.010
- Bano Z, Rajarathnam S. 1988. Pleurotus mushrooms. Part II. Chemical composition, nutritional value, post-harvest physiology, preservation, and role as human food. Crit Rev Food Sci Nutr 27: 87-158 https://doi.org/10.1080/10408398809527480
- Schepetkin IA, Quinn MT. 2006. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int Immunopharmacol 6: 317-333 https://doi.org/10.1016/j.intimp.2005.10.005
- Zhang M, Cui SW, Cheung PCK, Wang Q. 2007. Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Food Sci Tech 18: 4-19 https://doi.org/10.1016/j.tifs.2006.07.013
- Yang JH, Lin HC, Mau JL. 2002. Antioxidant properties of several commercial mushrooms. Food Chem 77: 229-235 https://doi.org/10.1016/S0308-8146(01)00342-9
- Kim HS, Ha HC, Kim TS. 2003. Research and prospects in new functional mushroom - Tremella fuciformis, Grifora frondosa and Hypsizigus marmoreus. Korean J Food Sci Ind 36: 42-46
- Lam SK, Ng TB. 2001. Hypsin, a novel thermostable ribosome- inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom Hypsizigus marmoreus. Biochem Biophys Res Comm 285: 1071-1075 https://doi.org/10.1006/bbrc.2001.5279
- Tsuchida K, Aoyagi Y, Odani S, Mita T, Isemura M. 1995. Isolation of a novel collagen-binding protein from the mushroom, Hypsizigus marmoreus, which inhibits the Lewis lung carcinoma cell adhesion to type IV collagen. J Biol Chem 270: 1481-1484 https://doi.org/10.1074/jbc.270.4.1481
-
Chang JS, Son JK, Gao L, Oh EJ. 2004. Inhibition of cell cycle progression on HepG2 cells by hypsiziprenol
$A_9$ , isolated from Hypsizigus marmoreus. Cancer Lett 212: 7-14 https://doi.org/10.1016/j.canlet.2004.03.013 - Ikekawa T, Saitoh H, Feng W, Zhang H, Li L, Matsuzawa T. 1992. Antitumor activity of Hypsizigus marmoreus. I. Antitumor activity of extracts and polysaccharides. Chem Pharm Bull 40: 1954-1957 https://doi.org/10.1248/cpb.40.1954
- Matsuzawa T, Sano M, Tomita I, Saitoh H, Ohkawa M, Ikekawa T. 1998. Studies on antioxidants of Hypsizigus marmoreus. II. Effects of Hypsizigus marmoreus for antioxidants activities of tumor-bearing mice. Yakugaku Zasshi 118: 476-481 https://doi.org/10.1248/yakushi1947.118.10_476
- AOAC. 1990. Official Method of Analysis. 15th ed. Association of Official Analytical Chemists, Arlington. Vol 17, p 868-931
- Megazyme. 2007. Mixed-Linkage Beta-Glucan assay procedure. p 7-10
- Dewanto V, Wu X, Liu RH. 2002. Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50: 4959-4964 https://doi.org/10.1021/jf0255937
- Oyaizu M. 1986. Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44: 307-318 https://doi.org/10.5264/eiyogakuzashi.44.307
- Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 26: 1199-1204 https://doi.org/10.1038/1811199a0
- Decker EA, Welch B. 1990. Role of ferritin as a lipid oxidation catalyst in muscle food. J Agric Food Chem 38: 674-677 https://doi.org/10.1021/jf00093a019
- Dojindo Laboratories. 2004. SOD assay kit-WST technical manual. p 1-4
- Crisan EV, Sands A. 1978. Nutritional value. In The biology and cultivation of edible mushrooms. Chang ST, Hayes WA, eds. Academic press, New York. p 137-165
-
Mantovani MS, Bellini MF, Angeli JP, Oliveira RJ, Silva AF, Ribeiro LR. 2007.
$\beta$ -Glucan in promoting health: Prevention against mutation and cancer. Mutat Res doi: 10.1016/j.mrrev.2007.07.002 - Manzi P, Pizzoferrato L. 2000. Beta-glucans in edible mushrooms. Food Chem 68: 315-318 https://doi.org/10.1016/S0308-8146(99)00197-1
- Mau JL, Lin HC, Chen CC. 2001. Non-volatile components of several medicinal mushrooms. Food Res Intl 34: 521-526 https://doi.org/10.1016/S0963-9969(01)00067-9
- Pyo MY, Ro IH. 1975. A study on the amino acid contents of edible mushrooms. Korean J Nutr 8: 47-59
- Kim HJ, Bae JT, Lee JW. 2005. Antioxidant activity and inhibitive effects on human leukemia cells of edibe mushroom extracts. Korean J Food Preserv 12: 80-85
- Cheung LM, Cheung PCK, Ooi VEC. 2003. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem 81: 249-255 https://doi.org/10.1016/S0308-8146(02)00419-3
- Kulkarni AP, Aradhya SM, Divakar S. 2004. Isolation and identification of a radical scavenging antioxidant-punicalagin from pith and carpellary membrane of pomegranate fruit. Food Chem 87: 551-557 https://doi.org/10.1016/j.foodchem.2004.01.006
- Kanatt SR, Chander R, Sharma A. 2007. Antioxidant potential of mint (Mentha spicata L.) in radiation-processed lamb meat. Food Chem 100: 451-458 https://doi.org/10.1016/j.foodchem.2005.09.066
- McCord JM, Fridovich I. 1969. Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 244: 6049-6055
- Kariya K, Nakamura K, Nomoto K, Matama S, Saigenji K. 1992. Mimicking of superoxide dismutase activity by protein- bound polysaccharide of Coriolus versicolor QUEI, and oxidative stress relief for cancer patients. Mol Biotecher 4: 40-46
- Song JH, Lee HS, Hwang JK, Chung TY, Hong SR, Park KM. 2003. Physiological activities of Phellinus ribis extracts. Korean J Food Sci Technol 35: 690-695
Cited by
- Antioxidant Activity of Extracts and Fractions from Aster scaber vol.41, pp.9, 2012, https://doi.org/10.3746/jkfn.2012.41.9.1197
- Changes in the Quality of New Cultivar Dewdrop Pine Mushroom (Lentinula edodes GNA01) Depending on the Storage Temperature vol.32, pp.5, 2016, https://doi.org/10.9724/kfcs.2016.32.5.585
- Food Functional Properties of Pleurotus eryngii Cultivated with Different Wavelength of LED Lights vol.19, pp.5, 2012, https://doi.org/10.11002/kjfp.2012.19.5.645
- Flavonoid Component Changes and Antioxidant Activities of Fermented Citrus grandis Osbeck Peel vol.38, pp.10, 2009, https://doi.org/10.3746/jkfn.2009.38.10.1310
- Physicochemical Characteristics and Antioxidant activity, Antimutagenicity, and Cytotoxicity of Hot-water Extract of Hericium erinaceus vol.28, pp.5, 2012, https://doi.org/10.9724/kfcs.2012.28.5.569
- Effect of high hydrostatic pressure (HHP) treatment on chemical and microbiological properties of Makgeolli vol.56, pp.3, 2013, https://doi.org/10.1007/s13765-013-3003-2
- Antioxidative Activity of Mushroom Water Extracts Fermented by Lactic Acid Bacteria vol.43, pp.1, 2014, https://doi.org/10.3746/jkfn.2014.43.1.080
- Quality Changes of Low Temperature Storage and Storage Period of New Cultivar Dewdrop Pine Mushroom (Lentinula edodes GNA01) and Button Mushroom (Agaricus bisporus Sing.) vol.33, pp.2, 2017, https://doi.org/10.9724/kfcs.2017.33.2.174
- Antioxidant Activities of Processed Deoduck (Codonopsis lanceolata) Extracts vol.42, pp.6, 2013, https://doi.org/10.3746/jkfn.2013.42.6.924
- Anti-obesity Effect of Hypsizigus marmoreus in High Fat-fed Mice vol.40, pp.12, 2011, https://doi.org/10.3746/jkfn.2011.40.12.1708
- Melanogenesis Inhibitory and Antioxidant Activities of Phellinus baumii Methanol Extract vol.41, pp.2, 2013, https://doi.org/10.4489/KJM.2013.41.2.104
- Antioxidant and skin whitening effects of Inonotus obliquus methanol extract vol.11, pp.2, 2013, https://doi.org/10.14480/JM.2013.11.2.099
- Comparison of Antioxidant Activities of Pileus and Stipe from White Beech Mushrooms (Hypsizygus marmoreus) vol.26, pp.8, 2016, https://doi.org/10.5352/JLS.2016.26.8.928
- Antioxidant activity and anti-obesity effect of Coprinus comatus in Zucker rat (fa/fa) vol.37, pp.1, 2014, https://doi.org/10.7853/kjvs.2014.37.1.51
- Isoflavone, β-Glucan Content and Antioxidant Activity of Defatted Soybean Powder by Bioconversion with Lentinula edodes vol.31, pp.5, 2016, https://doi.org/10.13103/JFHS.2016.31.5.386
- Component analysis and immuno-stimulating activity of Sparassis crispa stipe vol.48, pp.5, 2016, https://doi.org/10.9721/KJFST.2016.48.5.515
- Antioxidant Properties and Ubiquinone Contents in Different Parts of Several Commercial Mushrooms vol.41, pp.9, 2012, https://doi.org/10.3746/jkfn.2012.41.9.1235
- Changes in Microbial and Physicochemical Properties of Single-Brewed Makgeolli by High Hydrostatic Pressure Treatment during Fermentation vol.41, pp.8, 2012, https://doi.org/10.3746/jkfn.2012.41.8.1176
- Antioxidant activities of commonly used Brassica spp. sprout vegetables in Korea vol.21, pp.4, 2014, https://doi.org/10.11002/kjfp.2014.21.4.587
- Antioxidant and Immunological Activities of Sparassis crispa Fermented with Meyerozyma guilliermondii FM vol.45, pp.10, 2016, https://doi.org/10.3746/jkfn.2016.45.10.1398
- ABTS Radical Scavenging and Anti-Tumor Effects of Tricholoma matsutake Sing. (Pine Mushroom) vol.38, pp.5, 2009, https://doi.org/10.3746/jkfn.2009.38.5.555
- 한약재의 물 추출물이 당대사 관련 효소와 항산화 활성에 관한 연구 vol.37, pp.5, 2008, https://doi.org/10.3746/jkfn.2008.37.5.542
- 해송이버섯(Hypsizigus marmoreus)의 영양성분과 추출용매에 따른 암세포 생장억제 효과 vol.37, pp.11, 2007, https://doi.org/10.3746/jkfn.2008.37.11.1395
- 반응표면분석에 의한 해송이버섯(Hypsizigus marmoreus) 추출물 중 단백다당체의 암세포 성장억제효과 vol.37, pp.12, 2007, https://doi.org/10.3746/jkfn.2008.37.12.1647
- 참나무 수종별 톱밥재배에 따른 표고의 항산화 특성 vol.45, pp.2, 2017, https://doi.org/10.4489/kjm.20170015
- 감과피 첨가배지가 큰느타리 버섯의 항산화활성에 미치는 영향 vol.15, pp.4, 2007, https://doi.org/10.14480/jm.2017.15.4.210
- 다양한 조리법에 따른 버섯류의 엽산 리텐션 vol.24, pp.8, 2017, https://doi.org/10.11002/kjfp.2017.24.8.1103
- 건조 방법에 따른 느타리버섯과 새송이버섯 열수추출물의 항산화 활성 vol.33, pp.1, 2007, https://doi.org/10.9799/ksfan.2020.33.1.064
- Antioxidant activity of water-soluble polysaccharide extracts produced from perilla seed cake by enzymatic hydrolysis vol.28, pp.2, 2021, https://doi.org/10.11002/kjfp.2021.28.2.190