3-DESIGNS DERIVED FROM PLANE ALGEBRAIC CURVES

Hoseog Yu

ABSTRACT. In this paper, we develop a simple method for computing the stabilizer subgroup of a subgroup of

 $D(g) = \{\alpha \in \mathbb{F}_q \mid \text{there is a } \beta \in \mathbb{F}_q^\times \quad \text{such that} \quad \beta^n = g(\alpha)\}$

in $PSL_2(\mathbb{F}_q)$, where q is a large odd prime power, n is a positive integer dividing q-1, and $g(x) \in \mathbb{F}_q[x]$. As an application, we construct new infinite families of 3-designs (cf. Examples 3.4 and 3.5).

1. Introduction

A $t - (v, k, \lambda)$ design is a pair (X, \mathfrak{B}) , where X is a v-element set of points and \mathfrak{B} is a collection of k-element subsets of X called blocks, such that every t-element subset of X is contained in precisely λ blocks. For general facts and recent results on t-designs, see [1]. For the list of known families of 3-designs, see [4].

Let \mathbb{F}_q be a finite field with odd characteristic and $\Omega = \mathbb{F}_q \cup \{\infty\}$, where ∞ is a symbol. Let $G = PGL_2(\mathbb{F}_q)$ be a group of linear fractional transformations. Then, it is well known that the action $PGL_2(\mathbb{F}_q) \times \Omega \longrightarrow \Omega$ is triply transitive. Therefore, for any subset $X \subset \Omega$, we have a $3 - (q+1,|X|, \binom{|X|}{3} \times 6/|G_X|)$ design, where G_X is the setwise stabilizer of X in G (see [1, Proposition 4.6 in p.175]). In general, it is very difficult to calculate the order of the stabilizer G_X .

Letting X be $D_f^+ = \{a \in \mathbb{F}_q \mid f(a) \in (\mathbb{F}_q^{\times})^2\}$ for $f \in \mathbb{F}_q[x]$, one can derive the order of D_f^+ from the number of solutions of $y^2 = f(x)$. In particular, when $y^2 = f(x)$ is in a certain class of elliptic curves, there is an explicit formula for the order of D_f^+ . In [5], we chose a subset D_f^+ for a certain polynomial f and explicitly computed $|G_{D_f^+}|$, so that we obtained new families of 3-designs. Our method was motivated by a recent work of Iwasaki [3]. Iwasaki computed the orders of \overline{V} and $G_{\overline{V}}$, where \overline{V} is in our notation $D_f^- = \Omega - (D_f^+ \cup D_f^0)$ with f(x) = x(x-1)(x+1).

Received April 3, 2007.

²⁰⁰⁰ Mathematics Subject Classification. Primary 05B05.

Key words and phrases. 3-designs, stabilizer group.

This work was supported by the faculty research fund of Sejong University in 2006.

In [6], to get various 3-designs we use plane algebraic curves such as $y^n = f(x)$ for some positive integer n. In this paper, we generalize our method in [6]. As a consequence, we can derive new infinite families of 3-designs from the 3-designs obtained in [6].

2. Zero sets of algebraic curves

Let p be an odd prime number. For a prime power $q=p^r$ for some positive integer r, let \mathbb{F}_q be a finite field with q elements and $\overline{\mathbb{F}}_q$ be its algebraic closure. For $f(x_1,\ldots,x_n)\in \mathbb{F}_q[x_1,\ldots,x_n]$, f is called absolutely irreducible if f is irreducible over $\overline{\mathbb{F}}_q[x_1,\ldots,x_n]$. We also define

$$Z(f) = \{(a_1, \dots, a_n) \in \mathbb{F}_q^n \mid f(a_1, \dots, a_n) = 0\}.$$

Lemma 2.1. Let $f(x,y) \in \mathbb{F}_q[x,y]$ be a nonconstant absolutely irreducible polynomial of degree d. Then

$$|q+1-(d-1)(d-2)\sqrt{q}-d \le |Z(f(x,y))| \le q+1+(d-1)(d-2)\sqrt{q}.$$

Proof. See Theorem 5.4.1 in [2].

Lemma 2.2. Let n be a positive divisor of q-1 greater than 2. A polynomial $y^n - f(x) \in \mathbb{F}_q[x,y]$ is not absolutely irreducible if and only if there is a polynomial $h(x) \in \mathbb{F}_q[x]$ such that $f(x) = h(x)^e$ with a positive divisor e of n greater than 1.

Proof. See Lemma 2.2 in [6] or Lemma 3 in [7, p.54].

Let n be any positive integer dividing q-1 greater than 2. We fix a generator ω of \mathbb{F}_q^{\times} . Note that $\langle \omega^n \rangle = (\mathbb{F}_q^{\times})^n$. Let f(x) be a polynomial in $\mathbb{F}_q[x]$. For any integer k, we define

$$D(f)_k = \{ x \in \mathbb{F}_q \mid \omega^k f(x) \in (\mathbb{F}_q^{\times})^n \}.$$

In particular, we define $D(f) = D(f)_0$. Note that $D(f)_i = D(f)_j$ if and only if $i \equiv j \pmod{n}$. Furthermore

$$\mathbb{F}_q = Z(f) \cup \left(\cup_{k=0}^{n-1} D(f)_k \right),\,$$

 $Z(f) \cap D(f)_i = \emptyset$, and $D(f)_i \cap D(f)_j = \emptyset$ for $i \not\equiv j \pmod{n}$.

Denote by ϕ the Euler phi-function. Write d(f) for the degree of $f(x) \in \mathbb{F}_q[x]$ and write (m, n) for the positive greatest common divisor of integers m and n.

Theorem 2.3. For a positive divisor n of q-1 greater than 2, assume that two polynomials $y^n - f(x)$ and $y^n - g(x)$ in $\mathbb{F}_q[x,y]$ are absolutely irreducible.

Let $\nu=(n-1)d(f)+d(g)$. Assume that $q\geq \left(1+2\frac{n-1}{\phi(n)}\right)^2\nu^4$ and assume that

$$|D(f) \cup D(g) - D(f) \cap D(g)| \le 6d(f)\sqrt{q} + 4\nu.$$

Then there are an integer k $(1 \le k \le n-1)$ and $h(x) \in \mathbb{F}_q[x]$ such that $f(x)^k g(x) = h(x)^e$ with a positive divisor e of n greater than 1.

Proof. By Lemma 2.2, it suffices to show that there is an integer k such that $y^n - f(x)^k g(x)$ is not absolutely irreducible.

Suppose that $y^n - f(x)^i g(x)$ is absolutely irreducible for any integer i = 1, 2, ..., n-1. In general, for any $f, g \in \mathbb{F}_q[x]$, writing $f^i g(x) = f(x)^i g(x)$,

(1)
$$D(f^{i}g) = (D(f) \cap D(g)) \cup \left(\bigcup_{i=1}^{n-1} D(f)_{i} \cap D(g)_{-i} \right).$$

Because for any $h(x) \in \mathbb{F}_q[x]$

$$Z(y^n - h(x)) = \{(a, b) \in \mathbb{F}_q^2 \mid b \neq 0, \ b^n = h(a)\} \cup Z(h) \times \{0\},\$$

we get

$$|Z(y^n - h(x))| = |D(h)|n + |Z(h)|.$$

Especially, when $h(x) = \omega^j f(x)$, from Lemma 2.1 we have

(2)
$$|D(f)_j|n + |Z(f)| = |Z(y^n - \omega^j f(x))| \ge q + 1 - (d-1)(d-2)\sqrt{q} - d$$

where $d = \max(d(f), n)$, the degree of $y^n - \omega^j f(x) \in \mathbb{F}_q[x, y]$. Similarly when $h(x) = f^k g(x) = f(x)^k g(x)$, Lemma 2.1 implies that

(3)
$$|D(f^k g)|n + |Z(f^k g)| = |Z(y^n - f^k g(x))| \le q + 1 + (d_k - 1)(d_k - 2)\sqrt{q}$$
,

where $d_k = \max(kd(f) + d(g), n)$, the degree of $y^n - f(x)^k g(x)$. Note that

$$\begin{split} \cup_{i=1}^{n-1} \left(\cup_{j=1}^{n-1} D(f)_j \cap D(g)_{-ij} \right) &= \cup_{j=1}^{n-1} \left(D(f)_j \cap \left(\cup_{i=1}^{n-1} D(g)_{-ij} \right) \right) \\ &\supseteq \cup_{(j,n)=1} \left(D(f)_j \cap \left(\cup_{i=1}^{n-1} D(g)_{-ij} \right) \right) \\ &= \left(\cup_{(j,n)=1} D(f)_j \right) \cap \left(\cup_{i=1}^{n-1} D(g)_i \right) \\ &= \left(\cup_{(j,n)=1} D(f)_j \right) \cap \left(\mathbb{F}_q - (Z(g) \cup D(g)) \right) \\ &= \cup_{(j,n)=1} D(f)_j - (Z(g) \cup D(g)). \end{split}$$

Because $D(f) \cap (\bigcup_{(j,n)=1} D(f)_j) = \emptyset$, from the above computation we get

$$\cup_{i=1}^{n-1} \left(\cup_{j=1}^{n-1} D(f)_j \cap D(g)_{-ij} \right) = \cup_{(j,n)=1} D(f)_j - (Z(g) \cup (D(g) - D(f))).$$

Thus there is an integer k $(1 \le k \le n-1)$ such that

$$\left| \bigcup_{j=1}^{n-1} D(f)_j \cap D(g)_{-kj} \right|$$

$$\geq \frac{1}{n-1} \left(\sum_{(j,n)=1} |D(f)_j| - |Z(g)| - |D(g) - D(f)| \right).$$

Let $\delta=|D(f)\cup D(g)-D(f)\cap D(g)|$. Then $\delta=|D(f)-D(g)|+|D(g)-D(f)|\leq |D(f)-D(g)|+\frac{1}{n-1}|D(g)-D(f)|$. With the above k, from (1) we

820 HOSEOG YU

get the following inequality:

$$|D(f^{k}g)| \ge |D(f) \cap D(g)|$$

$$+ \frac{1}{n-1} \left(\sum_{(j,n)=1} |D(f)_{j}| - |Z(g)| - |D(g) - D(f)| \right)$$

$$(4) \qquad \ge |D(f)| - |D(f) - D(g)|$$

$$+ \frac{1}{n-1} \left(\sum_{(j,n)=1} |D(f)_{j}| - |Z(g)| - |D(g) - D(f)| \right)$$

$$\ge |D(f)| + \frac{1}{n-1} \sum_{(j,n)=1} |D(f)_{j}| - \frac{1}{n-1} |Z(g)| - \delta.$$

By applying (2) to (4), we have

$$|D(f^k g)|n \ge \left(1 + \frac{\phi(n)}{n-1}\right)(q+1 - (d-1)(d-2)\sqrt{q} - d - |Z(f)|) - n\delta - \frac{n}{n-1}|Z(g)|.$$

By combining (3) and the above inequality, we obtain

$$\frac{\phi(n)}{n-1} q - A_1 \sqrt{q} - n\delta \le A_2,$$

with the coefficients $A_1 = \left(1 + \frac{\phi(n)}{n-1}\right)(d-1)(d-2) + (d_k-1)(d_k-2)$ and $A_2 = \left(1 + \frac{\phi(n)}{n-1}\right)(d+|Z(f)|-1) + \frac{n}{n-1}|Z(g)| + 1 - |Z(fg)|$. Then we can show that $A_2 \leq \left(1 + \frac{\phi(n)}{n-1}\right)(d-1) + 1 + \left(1 + \frac{\phi(n)}{n-1}\right)|Z(f)| + \frac{1}{n-1}|Z(g)| < 4\nu$.

But when $q \ge \left(1 + 2\frac{n-1}{\phi(n)}\right)^2 \nu^4$ and $\delta \le 6d(f)\sqrt{q} + 4\nu$,

$$A_{2} \geq \frac{\phi(n)}{n-1} q - A_{1}\sqrt{q} - n\delta$$

$$= \frac{\phi(n)}{n-1} q - n\delta - \left(\left(1 + \frac{\phi(n)}{n-1}\right)(d-1)(d-2) + (d_{k}-1)(d_{k}-2)\right)\sqrt{q}$$

$$\geq \sqrt{q} \left((3\nu - 2)\left(2 + \frac{\phi(n)}{n-1}\right) - 6d(f)n\right) - 4\nu n \geq 2\sqrt{q} - 4\nu n \geq 6\nu.$$

Thus we get a contradiction. Therefore, the theorem follows.

3. New infinite families of 3-designs

From now on, we assume $-1 \notin (\mathbb{F}_q^{\times})^2$ and $q \neq 3$. Note that $q \equiv 3 \pmod 4$. Let X be a subset of $\Omega = \mathbb{F}_q \cup \{\infty\}$ and $G = PSL_2(\mathbb{F}_q)$ be the projective special linear group over \mathbb{F}_q . Denote by G_X the setwise stabilizer of X in

G. Define $\mathfrak{B} = \{\rho(X) \mid \rho \in G\}$. Then, it is well known that (Ω, \mathfrak{B}) is a $3 - \left(q+1, |X|, \binom{|X|}{3} \times 3/|G_X|\right)$ design (see, for example, Chapter 3 of [1]). Therefore if we could compute the order of the stabilizer G_X , then we obtain a 3-design. Denote by $\widetilde{\mathbb{F}}_q[x]$ the set of all nonconstant polynomials in $\mathbb{F}_q[x]$ that have no multiple roots in $\overline{\mathbb{F}}_q$.

Let n be a positive divisor of q-1 greater than 2. Throughout this section we always assume that $f(x) \in \widetilde{\mathbb{F}}_q[x]$ and (d(f), n) = 1. For some specific polynomials f, we compute |X| and G_X for X = D(f).

Define

$$\epsilon(f) = n\left(\left\lceil \frac{d(f)}{n} \right\rceil + 1\right).$$

For each $\rho \in PSL_2(\mathbb{F}_q)$, we always fix one matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{F}_q)$ such that $\rho(x) = \frac{ax+b}{cx+d}$. With this fixed matrix, we define

$$f_{\rho}(x) = f(\rho(x))(cx+d)^{\epsilon(f)}.$$

Note that

$$d(f_{\rho}) = egin{cases} d(f) & ext{if }
ho(\infty) = \infty, \ \epsilon(f) - 1 & ext{if } f(
ho(\infty)) = 0, \ \epsilon(f) & ext{otherwise.} \end{cases}$$

Lemma 3.1. Let $f(x) \in \widetilde{\mathbb{F}}_q[x]$ such that $q \geq \left(1 + 2\frac{n-1}{\phi(n)}\right)^2 (nd(f) + n - 1)^4$ and $d(f) \geq 2$. If (d(f) + 1, n) = 1 and $|D(f_\rho) - D(f)| \leq 3d(f)\sqrt{q}$ for $\rho \in PSL_2(\mathbb{F}_q)$, then ρ is a stabilizer of D(f), that is, $\rho(D(f)) = D(f)$.

Proof. Because $|D(f) \cup D(f_{\rho}) - D(f) \cap D(f_{\rho})| \le 6d(f)\sqrt{q} + 1$, by Theorem 2.3, there are $k \ (1 \le k \le n - 1)$ and $h(x) \in \mathbb{F}_q[x]$ such that

$$f(x)^k f_{\rho}(x) = h(x)^e,$$

where 1 < e and e|n. Since $d(f) \ge 2$, $f_{\rho}(x)$ has at least one root with multiplicity 1 in $\overline{\mathbb{F}}_q$. Hence we have $k \equiv -1 \pmod{e}$. Therefore

$$-d(f) + d(f_{\varrho}) \equiv 0 \pmod{e}$$
.

From the assumption of this section, (d(f), n) = 1, we get $\rho(\infty) = \infty$ or $f(\rho(\infty)) = 0$. In the latter case, $d(f_{\rho}) = \epsilon(f) - 1 \equiv -1 \pmod{n}$. Hence $d(f) + 1 \equiv 0 \pmod{e}$, which contradicts the assumption. Thus $\rho(\infty) = \infty$. Since $f(x)^{k+1} f_{\rho}(x) = h(x)^e f(x)$ and k+1 is divisible by e, f(x) divides $f_{\rho}(x)$. From the fact that $d(f) = d(f_{\rho})$, we know

$$f_{\rho}(x) = \gamma f(x)$$

for some $\gamma \in (\mathbb{F}_q^{\times})^n$. Therefore, $\rho(D(f)) = D(f)$.

Corollary 3.2. We assume that $f(x) \in \widetilde{\mathbb{F}}_q[x]$ such that $d(f) \geq 2$ and $q \geq 1$ $\left(1+2\tfrac{n-1}{\phi(n)}\right)^2(nd(f)+n-1)^4. \ \ \text{Let S be a subset of $D(f)$ such that $|S|$} \leq 3d(f)\sqrt{q}. \ \ \text{If $(d(f)+1,n)=1$ and $\rho\in PSL_2(\mathbb{F}_q)$ is a stabilizer of $D(f)-S$},$ that is, $\rho(D(f) - S) = D(f) - S$, then $f_{\rho}(x) = \gamma f(x)$ for some $\gamma \in (\mathbb{F}_{\rho}^{\times})^n$ and $\rho(D(f)) = D(f).$

Proof. Since

$$D(f) \cup D(f_{\rho}) - D(f) \cap D(f_{\rho}) \subseteq D(f) \cup D(f_{\rho}) - (D(f) - S)$$
$$\subseteq S \cup \rho^{-1}(S) \cup \{\rho^{-1}(\infty)\},$$

 $|D(f) \cup D(f_{\rho}) - D(f) \cap D(f_{\rho})| \le 2|S| + 1 \le 6d(f)\sqrt{q} + 1$. From the previous lemma, the corollary follows.

Remark 3.3. Under the conditions in Corollary 3.2, for $\rho \in PSL_2(\mathbb{F}_q)$

$$\rho \in G_{D(f)-S} \iff \rho \in G_{D(f)} \cap G_S.$$

Example 3.4. Let m and n be odd integers such that $1 < n \mid m \mid q - 1$, $(m, \frac{q-1}{m}) = 1$, and $q \ge \left(1 + 2\frac{n-1}{\phi(n)}\right)^2 (mn + 2n - 1)^4$. We consider the following plane algebraic curve in $\mathbb{F}_a[x,y]$

$$y^n = f(x) = x(x^m - s)$$
 for $s \notin (\mathbb{F}_q)^m$.

Then $(\Omega, D(f))$ forms the $3 - \left(q+1, \frac{q-1}{n}, \frac{(q-1)(q-1-n)(q-1-2n)}{2n^2m}\right)$ design (see Example 3.5 in [6]). Furthermore, $G_{D(f)}$ is a cyclic group of order $\frac{m}{n}$. For a positive divisor e of $\frac{m}{n}$, define H_e be the subgroup of $G_{D(f)}$ of order e. Let $R = \{r_i \mid i=1,2,\ldots,\frac{q-1}{m}\}$ be a set of coset representatives of $H_{m/n} = G_{D(f)}$ in D(f). Given positive integers δ and e such that $1 \leq \delta \leq 3(m+1)\sqrt{q}$ and $e \mid (\delta, \frac{m}{n})$, write $t = \left[\frac{\delta n}{m}\right]$ and define with σ , a generator of $H_{m/n}$,

$$S = \left(\cup_{i=0}^{(\delta - tm/n)/e - 2} \sigma^i H_e r_1 \right) \cup H_e r_2 \cup \left(\cup_{j=3}^{t+2} H_{m/n} r_j \right).$$

Then $|S| = \delta$ and Corollary 3.2 implies $G_{D(f)-S} = G_{D(f)} \cap G_S$. One can easily show that $|G_{D(f)-S}| = e$. Therefore, $(\Omega, D(f) - S)$ forms $3 - (q+1, \kappa, {\kappa \choose 3} \frac{3}{e})$ design where $\kappa = \frac{q-1}{n} - \delta$.

So we construct $3 - \left(q + 1, \frac{q - 1}{n} - \delta, \binom{\kappa}{3} \frac{3}{e}\right)$ designs for any positive integers δ and e such that $1 \le \delta \le 3(m + 1)\sqrt{q}$ and e is a divisor of $(\delta, \frac{m}{n})$.

Example 3.5. Here we will think of the case when the degree of f is 1. Let f(x) = x and let n be an odd integer greater than 1 dividing q-1 such that $q \ge \left(1 + 2\frac{n-1}{\phi(n)}\right)^2 (2n-1)^4$. Then $D(f) = (\mathbb{F}_q^{\times})^n$ and hence $|D(f)| = \frac{q-1}{n}$.

Let S be a nonempty subset of D(f) such that $|S| \leq 3\sqrt{q}$. Assume that $\rho \in PSL_2(\mathbb{F}_q)$ is a stabilizer of D(f) - S, that is, $\rho(D(f) - S) = D(f) - S$. Since $|D(f) \cup D(f_{\varrho}) - D(f) \cap D(f_{\varrho})| \le 2|S| + 1 \le 6\sqrt{q} + 1$, by Theorem 2.3, we know $f(x)^k f_{\rho}(x) = h(x)^e$ with $h(x) \in \mathbb{F}_q[x]$ and $2 \le e|n|$. Now one can easily show that

$$\rho \in G_{D(f)} = \{ \rho \in PSL_2(\mathbb{F}_q) \mid \rho(x) = ax \text{ or } \rho(x) = \frac{b}{x}, \quad a, -b \in (\mathbb{F}_q^{\times})^{2n} \}.$$

Therefore, $G_{D(f)-S} = G_{D(f)} \cap G_S$. Note that $G_{D(f)}$ is the dihedral group of order $\frac{q-1}{n}$ and that with fixed $\alpha \in (\mathbb{F}_q^{\times})^n$, $D(f) = \{\rho(\alpha) \mid \rho \in G_{D(f)}\}$. Suppose that positive integers δ and e such that $1 \leq \delta \leq 3\sqrt{q}$ and $e \mid (\delta, \frac{q-1}{n})$ are given. Let $\sigma \in G_{D(f)}$ be a generator of the cyclic subgroup of $G_{D(f)}$ of order $\frac{q-1}{2n}$. Now choose a subgroup H_e of $G_{D(f)}$ of order e and define

$$S = \{ \tau(\alpha) \mid \tau \in \cup_{i=0}^{\delta/e-1} H_e \sigma^i \}.$$

Then $|S|=\delta$ and $|G_{D(f)-S}|=|G_{D(f)}\cap G_S|=e$. For positive integers δ and e such that $1\leq \delta \leq 3\sqrt{q}$ and e is a divisor of $(\delta, \frac{q-1}{n})$, we get $3 - (q+1, \kappa, \binom{\kappa}{3}, \frac{3}{e})$ designs with $\kappa = \frac{q-1}{n} - \delta$.

References

- [1] T. Beth, D. Jungnickel, and H. Lenz, Design theory, Vol. 1, second ed., Encycl. Math. Appl., 69, Cambridge University Press, Cambridge, 1999.
- [2] M. D. Fried and M. Jarden, Field Arithmetic, Springer-Verlag, Berlin, 2005.
- [3] S. Iwasaki, Translations of the squares in a finite field and an infinite family of 3-designs, European J. Combin. 24 (2003), no. 3, 253-266.
- [4] D. L. Kreher, t-designs t > 3, in: The CRC Handbook of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz Editors), CRC Press, Boca Raton (1996), 47-66.
- [5] B.-K. Oh, J. Oh, and H. Yu, New infinite families of 3-designs from algebraic curves over \mathbb{F}_q , European J. Combin. **28** (2007), no. 4, 1262–1269.
- [6] B.-K. Oh and H. Yu, New infinite families of 3-designs from algebraic curves of higher genus over finite fields, Electron. J. Combin. 14 (2007), no. 1, Note 25.
- S. A. Stepanov, Arithmetic of algebraic curves, Monographs in Contemporary Mathematics. Consultants Bureau, New York, 1994.

DEPARTMENT OF APPLIED MATHEMATICS

SEJONG UNIVERSITY

SEOUL 143-747, KOREA

E-mail address: hsyu@sejong.ac.kr