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3-DESIGNS DERIVED FROM PLANE ALGEBRAIC CURVES

HoseoG Yu

ABSTRACT. In this paper, we develop a simple method for computing the
stabilizer subgroup of a subgroup of

D(g) ={a €T, | thereisa 8 € FS such that 8" = g(a)}

in PSL2(Fy), where ¢ is a large odd prime power, n is a positive integer
dividing ¢ — 1, and g(z) € Fy[z]. As an application, we construct new
infinite families of 3-designs (cf. Examples 3.4 and 3.5).

1. Introduction

At —(v,k, ) design is a pair (X,B), where X is a v-element set of points
and B is a collection of k-element subsets of X called blocks, such that every
t-element subset of X is contained in precisely A blocks. For general facts and
recent results on t-designs, see [1]. For the list of known families of 3-designs,
see [4].

Let F, be a finite field with odd characteristic and Q = F, U{oo}, where cc is
a symbol. Let G = PGLy(F,) be a group of linear fractional transformations.
Then, it is well known that the action PGLy(F;) x Q —»  is triply transitive.

X
1) x /16l
design, where Gx is the setwise stabilizer of X in G (see [1, Proposition 4.6
in p.175]). In general, it is very difficult to calculate the order of the stabilizer
Gx.

Letting X be D;{ ={a €T, | f(a) € (F})?} for f € F,[z], one can derive
the order of D}F from the number of solutions of y* = f(z). In particular, when
y?> = f(z) is in a certain class of elliptic curves, there is an explicit formula for
the order of D;{. In [5], we chose a subset Dj[ for a certain polynomial f and
explicitly computed |G DY |, so that we obtained new families of 3-designs. Our

method was motivated by a recent work of Iwasaki [3]. Iwasaki computed the
orders of V and Gy, where V is in our notation Dy =Q- (D}” U DY) with
f(@) = a(z - 1)(@ +1).

Therefore, for any subset X C ©, we have a 3 — (¢ + 1, |X], (

Received April 3, 2007.

2000 Mathematics Subject Classification. Primary 05B05.

Key words and phrases. 3-designs, stabilizer group.

This work was supported by the faculty research fund of Sejong University in 2006.

(©2007 The Korean Mathematical Society
817



818 HOSEOG YU

In [6], to get various 3-designs we use plane algebraic curves such as y™ =
f(z) for some positive integer n. In this paper, we generalize our method
in [6]. As a consequence, we can derive new infinite families of 3-designs from
the 3-designs obtained in [6].

2. Zero sets of algebraic curves

Let p be an odd prime number. For a prime power ¢ = p” for some positive
integer r, let F, be a finite field with ¢ elements and F, be its algebraic clo-
sure. For f(z1,...,2,) € Fylz1,...,2,], f is called absolutely irreducible if f
is irreducible over F,[zy,...,2,]. We also define

Z(f) = {(a1,.-,an) €F? | flas,...,an) = O}.

Lemma 2.1. Let f(z,y) € Fy[z,y] be a nonconstant absolutely irreducible
polynomial of degree d. Then

g+1-(d-1)(d-2)vg—-d<|Z(f(z,y)| S q+1+(d-1)(d-2)V/q
Proof. See Theorem 5.4.1 in [2]. O
Lemma 2.2. Let n be a positive divisor of ¢ — 1 greater than 2. A polynomial
y" — f(z) € Fylz,y| is not absolutely irreducible if and only if there is a polyno-

mial h(z) € F,[z] such that f(z) = h(z)® with a positive divisor e of n greater
than 1.

Proof. See Lemma 2.2 in [6] or Lemma 3 in [7, p.54]. ]

Let n be any positive integer dividing g— 1 greater than 2. We fix a generator
w of F¥. Note that (w™) = (Fy)". Let f(z) be a polynomial in F,[z]. For any
integer k, we define
D(f)x ={z €F, |w*f(z) € (F)"}.
In particular, we define D(f) = D(f)o. Note that D(f); = D(f); if and only
if i =j (mod n). Furthermore
Fy = Z(f) U (G2 D)

Z(f) N D(f); = 0, and D(f); N D(f); = 0 for i # j (mod n).
Denote by ¢ the Euler phi-function. Write d(f) for the degree of f(z) € F, [z]
and write (m,n) for the positive greatest common divisor of integers m and n.

Theorem 2.8. For a positive divisor n of ¢ — 1 greater than 2, assume that
two polynomials y™ — f(z) and y"™ — g(z) in Fy[z,y] are absolutely irreducible.

2
Letv = (n—-1)d(f) +d(g). Assume that q > (1 + 2;‘7‘;15) v* and assume that

|D(f) U D(g) — D(f) N D(g)| < 6d(f)v/q + 4v.

Then there are an integer k (1 < k < n — 1) and h(z) € Fy[z] such that
f(x)*kg(x) = h(z)® with a positive divisor e of n greater than 1.
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Proof. By Lemma 2.2, it suffices to show that there is an integer k such that
y™ — f(x)*g(z) is not absolutely irreducible.

Suppose that y™ — f(z)'g(z) is absolutely irreducible for any integer i =
1,2,...,n — 1. In general, for any f,g € F,[z], writing fig(z) = f(z)'g(x),

(1) D(f'g) = (D(£) N D(g)) U (U;=! D(£); 1 D(g)—s;) -
Because for any h(z) € F, [z]
Z(y" = h(z)) = {(a,b) € F] [b# 0, b" = h(a)} U Z(R) x {0},
we get
12(y" — h(z))]| = D)} + | Z(h)].
Especially, when h(z) = w’ f(z), from Lemma 2.1 we have
@) DAin+1Z2HN=12(y" - f@)| 2 g+ 1= (d - 1)(d - 2)\/g - d,
where d = max(d(f),n), the degree of y" — w’ f(x) € F,[x,y]. Similarly when
h(z) = f*g(z) = f(z)*g(z), Lemma 2.1 implies that
@) ID(ffg)ln+1Z(f*9) = 12" = fFg(2)) < g+ 1+ (di — 1)(di — 2)/d,

where d = max(kd(f) + d(g),n), the degree of y™ — f(x)*g(z).
Note that

U (UiZ) D(f); N D(g)—i5) = U=} (D(£); N (U5 D(g)-i5))
U N (U5 D(9)-i5))
) N (U5 D(g)s)
N (¥, - (Z(g) Y D(y)))
= U(j,n):lD(f)j ~(Z(g9) U D(g)).
0,

I
—_~
c

<
3

I

—
S~h
s,
g
—

Because D(f) N (Ujny=1D(f); )=
UL (YIS D(£); N D(9)-i5) = Uim=1 D(f); = (Z(g) U (D(g) — D(£))) -
Thus there is an integer k (1 < k < n ~ 1) such that

UZZi D(£); N D(g)-4j]|

Y. D)1 -12(9) I—ID(g)—D(f)l)-
(4,n)=1

from the above computation we get

Let 6 = |D(f) U D(g) — D(g)|. Then é = |D(f) — D(g)| + |D(g) -
D(f)| < |D(f) - D(g)| + 1|D( ) — D(f)|. With the above k, from (1) we
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get the following inequality:
ID(f*9)| > |D(f) N D(g)|

bt ( > |D(f)j|—IZ(g)I—ID(g)—D(f)I)

@ > ID() - ID(f) - Dig)|
+ni1(2 ID(7);] - 12(9)] ~ 1 D(g) - D(f)l)
(4m)
1

ID()5| - —1=12(0)] -5

(j,n):l

By applying (2) to (4), we have
n
DUl > (14 220} (41 - = Dd—2)va-d=1Z())
n
—né — m|z(9)|~
By combining (3) and the above inequality, we obtain
) AT < A,
n—1
with the coefficients A1 = (1+ 2% (d - 1)(d — 2) + (dx — 1)(di — 2) and
Ay = (1+:A_ﬁll) (d+12(f)] = 1)+ =2|Z(g)| + 1 - | Z(fg)|- Then we can show
that 4 < (1+25) (d- 1)+ 1+ (1+29) 12(0)] + L512(9)] < 4.
2
But when ¢ > (1 +2221) 04 and 6 < 6d(f),/T + 4,

A2ZMQ—A1\/6—H(5

= }(—}iq—né— ((1+%> (d—1)(d—2)+(dk—1)(dk—2)) NG
> \/'( ~2) <2+ ¢(")1> —6d(f)n) — dvn > 2./ — 4vn > 6v.

Thus we get a contradiction. Therefore, the theorem follows. O

3. New infinite families of 3-designs

From now on, we assume —1 ¢ (F))? and q # 3. Note that ¢ = 3 (mod 4).
Let X be a subset of Q@ = F, U {oo} and G = PSLy(F,) be the projective
special linear group over F,. Denote by Gx the setwise stabilizer of X in
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G. Define B = {p(X) | p € G}. Then, it is well known that (Q2,B) is a
3 - (q +1,]X], (|)§|> X 3/|GX|) design (see, for example, Chapter 3 of [1]).

Therefore if we could compute the order of the stabilizer Gx, then we obtain a
3-design. Denote by ﬁ‘q [z] the set of all nonconstant polynomials in F,[z] that
have no multiple roots in F,.

Let n be a positive divisor of ¢ — 1 greater than 2. Throughout this section
we always assume that f(z) € ﬁ'q [z] and (d(f),n) = 1. For some specific
polynomials f, we compute | X| and Gx for X = D(f).

Define
ef)=n ([@} + 1) .

For each p € PSLy(F,), we always fix one matrix ((Cl Z) € SLy(F,) such that

p(z) = Z:is With this fixed matrix, we define

fo(@) = fp(@))(cx +d) P,

Note that
d(f) if p(00) = o0,
d(fp) = { e(f) — 1 if f(p(c0)) =0,
e(f) otherwise.

Lemma 3.1. Let f(z) € F,[z] such that ¢ > (1 + 2(’;(—_711))2 (nd(f)+n—1)* and
d(f) > 2. If (d(f)+1,n) =1 and |D(f,) - D(f)| < 3d(f)\/q for p € PSL2(F,),
then p is a stabilizer of D(f), that is, p(D(f)) = D(f).

Proof. Because |D(f)UD(f,)—D(f)ND(f,)| < 6d(f)\/g+1, by Theorem 2.3,
there are k (1 < k <n—1) and h(z) € F,[z] such that
f(@)* () = h(z)°,

where 1 < e and e|n. Since d(f) > 2, f,(z) has at least one root with multi-
plicity 1 in F,. Hence we have k = —1 (mod e). Therefore

—d(f) +d(f,) =0 (mod e).

From the assumption of this section, (d(f),n) = 1, we get p(cc) = oo or
f(p(cc)) = 0. In the latter case, d(f,) = e(f) ~1 = —1 (mod n). Hence
d(f) + 1 = 0 (mod e), which contradicts the assumption. Thus p(cc) = oo.
Since f(x)¥! f,(x) = h(z)° f(z) and k + 1 is divisible by e, f(x) divides f,(z).
From the fact that d(f) = d(f,), we know

fo(z) = 7f(x)
for some v € (Fy)™. Therefore, p(D(f)) = D(f). a
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Corollary 3.2. We assume that f(x) € F,[z] such that d(f) > 2 and ¢ >
<

<1+2¢(n ) (nd(f) + n — 1)*. Let S be a subset of D(f) such that |S| <

VA If (d(f) +1,n) =1 and p € PSLy(F,) is a stabilizer of D(f) — S,
that is, p(D(f) = S) = D(f) — S, then f,(z) = vf(x) for some v € (F;)" and
p(D(f)) = D(f).
Proof. Since

D(f)uD(f,) — D(f) N D(f,) € D(f)u D(f,) — (D(f) - S)
CSUp H(S)U{pT (o)},

|ID(f)UD(f,) — D(f)n D(f,)| <2|S|+1<6d(f)\/q+ 1. From the previous

lemma, the corollary follows. O

Remark 3.3. Under the conditions in Corollary 3.2, for p € PSLy(F,)
p€Gpi—s & p€Gpy) NGs.

Example 3.4. Let m and n be odd integers such that 1 < n | m | ¢ — 1,

(m, =) =1, and ¢ > (1 + 2—7) (mn + 2n — 1)%. We consider the following

’'m

plane algebraic curve in F, [z, y]
y" = f() = a(a™ —s) for s ¢ (F,)"
Then (Q, D(f)) forms the 3 — (q—l— 1, (q"l)(q";_fgfq_l_zn)) design (see

n

Example 3.5 in [6]). Furthermore, Gpy) is a cyclic group of order 7+
For a positive divisor e of Z*, define H. be the subgroup of Gp(y) of order

e. Let R={r;|i=1,2,..., 3;_1—1} be a set of coset representatives of Hy,/, =
Gp(s) in D(f). Given positive integers § and e such that 1 < < 3(m +1),/g

and e | (6, ), write t = [2] and define with o, a generator of Hy,/n,

S = ( Séotm/n)/e 2 2[-_[ 1"1) UH ro U (U] 3Hm/nr.7)

Then |S| = ¢ and Corollary 3.2 implies G p(s)—s = Gp(y) N Gs. One can easily
show that |Gp(s)_s| = e. Therefore, (Q,D(f) — S) forms 3 — (¢ + 1,5, (5)2)
design where k = ”— —4.

So we construct 3 — (g+ 1,22 -6, (5)2) designs for any positive integers
4 and e such that 1 <6 < 3(m + 1),/g and e is a divisor of (6, Z*).

Example 3.5. Here we will think of the case when the degree of f is 1. Let
f(z) =z and let n be an odd integer greater than 1 dividing ¢ — 1 such that

(1 +255 )) (2n — 1)%. Then D(f) = (F})™ and hence |D(f)| = L.
Let S be a nonempty subset of D(f) such that |S| < 3,/g. Assume that

p € PSLy(F,) is a stabilizer of D(f) — S, that is, p(D(f) — S) = D(f) — S.
Since |D(f)UD(f,) —D(f)ND(f,)| <2|S|+1 < 6,/g+1, by Theorem 2.3, we
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know f(z)* f,(z) = h(z)¢ with h(z) € F,[z] and 2 < eln. Now one can easily
show that

p € Gp(yy = {p € PSLy(F,) | p(x) = az or p(x) =

]| o

, a,—be (FX)™}.

"

Therefore, Gp(s)-s = Gp(y) NGs. Note that Gp(y) is the dihedral group of
order % and that with fixed a € (Fy )™, D(f) = {p(a) | p € Gp(s)}. Suppose

that positive integers 6 and e such that 1 < § < 3y/q and e | (4, %) are given.

Let 0 € Gp(yy be a generator of the cyclic subgroup of Gp(y) of order =t

2n
Now choose a subgroup H, of G p(y) of order e and define
S={r(a)|7eU/ Ho'}.
Then |S| = 4§ and |GD(f)—S| = |GD(f) NGs| =e.
For positive integers ¢ and e such that 1 < § < 3./q and e is a divisor of
(6,45), we get 3 — (g +1,k, (5)2) designs with x = &1 — 4.

1
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