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ABELIAN-BY-NILPOTENT GROUPS WITH CHAIN
CONDITIONS FOR NORMAL SUBGROUPS
OF INFINITE ORDER OR INDEX

DAE HYUN PAEK

ABSTRACT. We study the structure of abelian-by-nilpotent groups satis-
fying the maximal condition on infinite normal subgroups or the minimal
condition on normal subgroups of infinite index.

1. Introduction

A group G is said to satisfy the weak mazimal condition on normal subgroups
if there are no infinite ascending chains G; < G5 < - - - of normal subgroups of
G such that all the indices |G;41 : G;| are infinite. The weak minimal condi-
tion on normal subgroups is defined by substituting descending for ascending
chains. Kurdachenko [2] considered groups satisfying the weak maximal or
weak minimal conditions on normal subgroups.

A group G is said to satisfy maz-oon (the maximal condition on infinite
normal subgroups) if there are no infinite ascending chains of infinite normal
subgroups of G. Similarly a group G is said to satisfy min-oon (the minimal
condition on normal subgroups of infinite index) if there are no infinite de-
scending chains of normal subgroups with infinite index in G. Since the chain
conditions max-oon and min-con are weaker than the chain conditions max-n
and min-n (the maximal and minimal conditions on normal subgroups, respec-
tively), we define a group satisfies max-oon* if it satisfies max-oon, but not
max-n and a group satisfies min-oon* if it satisfies min-ocon, but not min-n.

De Giovanni et al. [3] characterized the structure of groups satisfying max-
oon® or min-con*. In addition, the structure of nonfinitely generated solvable
groups satisfying max-oon* and solvable groups satisfying min-con* was inves-
tigated in detail. In this paper, we consider abelian-by-nilpotent groups with
these chain conditions.
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2. Basic results

We say that a G-operator group N is G-quasifinite if N is infinite but every
proper G-invariant subgroup of N is finite.

Lemma 2.1 ([3], Theorem 2.1). Let G be a group satisfying maz-oon™. Then
there is an infinite normal subgroup R which has the following properties:

(1) R is the unique smallest normal subgroup such that G/R has maz-n;

(2) R is the unique G-quasifinite normal subgroup;

(3) R is either an elementary abelian p-group or a radicable abelian p-group
of finite rank for some prime p;

(4) R is a countably infinite, locally finite G-module.

And the subgroup R in Lemma 2.1 is denoted by
p(G).

Lemma 2.2 ([3], Proposition 4.4). If G is a nonfinitely generated soluble group
with maz-oon*, then Cq(p(G)) is a torsion group.

Karbe [1] proved that the weak maximal or weak minimal conditions on
normal subgroups are inherited by any subgroups of finite index. We aim to
extend Wilson’s theorem on groups with min-n to G-operator groups. This will
be used for investigating abelian-by-nilpotent groups with min-oon*. Recall the
statement of Wilson’s theorem: if a group G satisfies min-n and H is a subgroup
of G with finite index, then H satisfies min-n.

The following is the generalization of Wilson’s theorem.

Proposition 2.3. Let M be a G-operator group and let H be o subgroup of G
of finite index. If M has min-G, then it has min-H.

Proof. First note that the case M = G is Wilson’s Theorem. The proof is
substantially Wilson’s. Suppose that M does not in fact have min-H. Since
G/Hg is finite, we may assume that H < G. By min-G it follows that M
contains a subgroup K which is G-invariant and minimal with respect to not
satisfying min-H.

Consider the set & of all finite nonempty subsets X of G with the following
property: if

(1) Ki>Ks >+
is an infinite descending chain of H-invariant subgroups of K, then
) K =K

holds for all i. It is not evident that such subsets exist, so our first concern is
to produce one.

Let T be a transversal to H in G; thus G = HT. For any chain the above
type we have KI' = KHT = K& < K since K; is H-invariant and K is G-
invariant. If K # K, then K has the property min-H by minimality of
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K. But this implies that K; = K, for some j > i. By this contradiction
KI'=Kforalliand T € &.

We now select a minimal element of &, say X. If z € X, then Xz~ 1 € &
because K is G-invariant. Of course Xz~ is also minimal in & and it contains
1. Thus we may assume that 1 € X. If in fact X contains no other element,
then (1) and (2) are inconsistent, so that K has min-H. Consequently the set

Y =X\{1}

is nonempty. Therefore Y does not belong to & by minimality of X.
It follows that there exists an infinite descending chain K; > Ky > --- of
H-invariant subgroups of K such that K JY # K for some j. Define

Li=K nKY.

Then L; is a H-invariant subgroup of K. Also L; > L;y;. Suppose that
Li = Lity; since X € &, we must have K = KX | and

K;=K,NKJX, = K;N(Kiz1KY,)) < Ki1Li = Kia,

contradicting K; > K;y1. Hence L; > L, for all i. Therefore L¥ = K for all
i, which shows that

K; = K; ﬂLf =K;nN (L]Ly) < Lj(Kj ﬂK]Y) =Lj;.

Hence K; = L;. Finally, by definition of L; we obtain K} = KX = K, a
contradiction. O

3. Abelian-by-nilpotent groups with max-oon* or min-ocon*
Our first result describes abelian-by-nilpotent groups with max-oon*.

Theorem 3.1. An abelian-by-nilpotent group G satisfies maz-oon* if and only
if there is an infinite abelian normal subgroup R such that G/R is finitely
generated, R is G-quasifinite, and C(R) is torsion.

Proof. Suppose that G satisfies max-oon*. Then, since finitely generated abel-
ian-by-nilpotent groups satisfy max-n, G is not finitely generated. Hence the
result follows from Lemmas 2.1 and 2.2.

Conversely, suppose that G has the structure indicated, but does not satisfy
max-ocon. Let G; < Gy < --- be an infinite ascending chain of infinite normal
subgroups of G.

Case: G; N R is infinite for some i. Since R is G-quasifinite, G;N R = R
and so R < G;. Hence G/R does not have max-n, a contradiction.

Case: G; N R is finite for all i. Since G;R/R ~ G;/G; N R is infinite,
G;R/R is not torsion. Hence G;R/R has an element zR of infinite order.
Since (z)R < G;R, we can assume that z € G;. If [R, /] = 1, then 27 €
Cg(R), a contradiction. Hence [R, z7] is finite with bounded order. Since
[R, 27]® = [R, 27], it follows that [R, 2/, z¥] = 1 for some k > 0 and all



766 DAE HYUN PAEK

j > 0. Hence [R, z*, z*¥] = 1. If I is the order of [R, z*], then [R, z'*] <
[R, mk]l [R, =¥, z¥] = 1. Hence z'* € Cg(R), a contradiction.

Thus G satisfies max-oon. Finally, R cannot be finitely generated since
otherwise it would be finite. Hence G does not have max-n. O

Proposition 3.2. A torsion abelian-by-nilpotent group G with maz-oon* is
Chernikov.

Proof. Let R = p(G). Then G/R is finitely generated solvable torsion, so it
is finite. Write G = X R where X is finite abelian-by-nilpotent. We will show
that R is not an elementary abelian p-group. Let

U=RP?(XNR)
for some prime p. We pass to the group
G =G/U = (XU/U) x (R/U).

Thus we can assume that G = X x R with R an elementary abelian p-group
and X a finite nilpotent group. Write X = P x () where P is the p-component
and @ is the p'-component. Write

C = Cr(P).

Then C' is a Z, @-module. By Maschke’s Theorem, C is completely reducible,
that is, a direct sum of simple submodules-the latter are X-invariant and so are
normal in G. Thus C is a direct summand of finitely many simple submodules;
hence C' is finite.

Next observe that PR is nilpotent since P is a finite p-group and R is an
elementary abelian p-group. The argument of the last paragraph shows that
each Z;11(PR)/Z;(PR) is finite. Consequently PR is finite and so is R, a
contradiction.

Therefore R is a radicable abelian p-group of finite rank for some prime p
by Lemma 2.1. Hence G is Chernikov. [

We now consider abelian-by-nilpotent groups with min-con*; in order to do
this, we begin with polycyclic groups with min-con*.

Lemma 3.3. A polycyclic group G satisfies min-oon* if and only if it is a finite
extension of a G-rationally irreducible free abelian subgroup of finite rank.

Proof. Suppose that G satisfies min-oon*. Let A be a non-trivial free abelian
normal subgroup of G. Then G /A must be finite since otherwise A has min-G.
Now let B be a non-trivial G-invariant subgroup of A. Then G/B is finite,
hence so is A/B, by the preceding argument. Consequently A is G-rationally
irreducible.

Conversely, suppose that A4 is a G-rationally irreducible free abelian sub-
group of finite rank such that G/A is finite. Suppose that G dose not satisfy
min-oon and let G; > G2 > --- be an infinite descending chain of normal
subgroups of G with infinite index.
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Case: G;N A is finite for some i. Since A is torsion-free, G; N A = 1. Hence
GiA/A~G;/G;N A ~ G, is finite, a contradiction.

Case: G; N A is infinite for all i. Since AJ/ANG; = AG,;/G, is finite, and so
is G/G;, a contradiction. Thus G satisfies min-oon. Finally, G does not satisfy
min-n: for A does not have min-G. O

Now we can determine the structure of abelian-by-nilpotent groups with
min-oon™.

Theorem 3.4. An abelian-by-nilpotent group G satisfies min-oon* if and only
if it has an infinite abelian normal subgroup A such that:

either

(1) A is a G-rationally irreducible free abelian subgroup of finite rank such
that G/A is finite

or else

(2) G/A is infinite cyclic-by-finite, A has min-G, and A/[A, ] is finite where
T is any element of infinite order in G.

Proof. Suppose that G has min-oon*. Let A be an abelian normal subgroup
of G with G//A nilpotent. If A is finite, then G/A is a nilpotent group with
min-oon*. Hence it is infinite cyclic-by-finite and so is G ([5], Lemma 3.1).
Hence G has the structure given in (1). Thus we now assume that A is infinite.

Case: G/A is finite. We will show that G is polycyclic in this case. Most
of the work is to show that A is not torsion. Suppose for now that we have
shown this. Let z € A have infinite order and put B = (z)%. Since G/A is
finite, B is a finitely generated infinite abelian normal subgroup of G. Hence
G/ B is finite since otherwise B has min-G. Therefore G is polycyclic. Thus it
will suffice to argue that A is not torsion. Note that 4 does not have min-G.
Assuming that A is torsion, we know that it is the direct sum of finitely many
non-trivial primary components and only one primary component Ay can be
infinite since A does not satisfy min-G. Let

Alp]l={acA|a® =1}

If A[p]is finite, then A has finite rank. Hence it is a direct sum of finitely many
cyclic and quasicyclic groups. But then A has min, as must G, a contradiction.
Therefore A[p] is infinite elementary abelian.

If G/A[p] is infinite, then A[p] has min-G; and hence has min-A by Propo-
sition 2.3. This implies that A[p] is finite, a contradiction. Hence G/A[p] is
finite and A[p] does not have min-G. If H is an infinite G-invariant subgroup
of A[p] of infinite index, then as before H has min-A by Proposition 2.3, a
contradiction. Consequently every infinite G-invariant subgroup of A[p] has
finite index. It follows that A[p] has max-coG (the maximal condition for
infinite G-invariant subgroups), so G has max-con. Hence G is Chernikov by
Proposition 3.2 and so A[p] is finite. By this contradiction A is not torsion.

Case: G/A is infinite. We will show that G has the structure given in (2) in
this case. Since G//A is infinite, A has min-G and so G/A does not have min-n.
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Thus G/A is cyclic-by-finite ([5], Lemma 3.1), and so it is finite-by-cyclic. Now
we write G = X A with X a finitely generated subgroup.

Let z € A have infinite order. Then, since A has min-G, it follows that (z)¢
has min-G. Also (2)€ is a finitely generated G/A-module. Since G/A is finitely
generated nilpotent, it is polycyclic. Hence (2)¢ has max-G ([7], 15.3.3). It
follows that (2)¢ is finite, a contradiction. Therefore A is torsion.

Now let M be a maximal normal torsion subgroup of G containing A such
that G/M = (zM) is infinite cyclic and M /A is finite.

Now we write G/A = M/A x (zA) where |z} = co. We note that

(z, M, z]) < {z, M) =G.

If M/[M, z] is infinite, then (z, [M, z]) has infinite index in G. Thus
(z, [M, z]) has min-G. But then (z*, [M, z*]) is a G-invariant subgroup of
(z, [M, z]) for each k > 0, which cannot be true. Hence M/[M, z] is finite.

Write G = X A where X is a finitely generated abelian-by-nilpotent group.
Then X has max-n. Hence X N A has max-X, and also min-X since G = X A.
Therefore X N A is finite. Now factor out by the finite normal subgroup X N A.
Then

G=XxA and M=(MNX)xA.

Let z € G with |z| = co. Then z = ya with y € X, a € A and clearly |y| =
00. Also [4, z] = [4, y]. So we can assume that z € X. Then [M, 2] = [A, 7]
since [M, z] <[4, z] [M N X, z] and [M N X, 2] < X N A = 1. This argument
shows that

M, 2] <[4, z}(X N A4).
Since X N A is finite, so is [M, z]/[A, z]. Therefore A/[A, z] is finite.

Conversely, if (1) holds, then G is polycyclic and the result follows from
Lemma 3.3. Thus we assume that (2) holds. Suppose that G; > G2 > -+ is
an infinite descending chain of normal subgroups of G with infinite index.

Case: G; A/ A is infinite for somei. G;A/A contains an element 2 A of infinite
order where z € G; and G/G;A is finite. Since [4, z] < ANG;, it follows that
AJ/ANG; ~ AG;/G, is finite and so is G/G;, a contradiction.

Case: G;AJA is finite for all i. There is an 4 such that G;A = G114 and
G; N A= G;+1 N A, which implies that

Git1 = Git1NGA=Gi(Gipa N A) =Gy,

a contradiction.

Therefore G has min-con. Finally if G has min-n, then it is locally finite
([6], Theorem 5.25). Hence G/A is finitely generated locally finite and so is
finite, a contradiction. O

Example 3.5 ([4], Example 3.4). Let M = (a;) x (a2) X --- be an infinite
elementary abelian p-group and let X = (x) be an infinite cyclic group acting
on M via

T __ E2 —
ai =a; and af,; = a;+10;
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foralli=1,2,.... Then G = X x M is an abelian-by-nilpotent group with
min-oon*.

References
(1]

M. Karbe, Groups satisfying the weak chain conditions for normal subgroups, Rocky
Mountain J. Math. 17 (1987), no. 1, 41-47.

L. A. Kurdachenko, Groups that satisfy weak minimality and mazimality conditions for
normal subgroups, Sibirsk. Mat. Zh. 20 (1979), no. 5, 1068-1076, 1167.

F. De Giovanni, D. H. Paek, D. J. S. Robinson, and A. Russo, The mazimal and minimal
conditions for normal subgroups of infinite order or index, Comm. Algebra 33 (2005),
no. 1, 183-199.

D. H. Paek, Locally nilpotent groups with the mazimal condition on infinite normal
subgroups, Bull. Korean Math. Soc. 41 (2004), no. 3, 465-472.

s Locally nilpotent groups with the minimal condition on normal subgroups of
infinite indez, Bull. Korean Math. Soc. 41 (2004), no. 4, 779-783.

D. J. S. Robinson, Finiteness conditions and generalized soluble groups, Springer-Verlag,
Berlin, 1972.

s A course in the theory of groups, Graduate Texts in Mathematics, 80. Springer-
Verlag, New York, 1996.

DEPARTMENT OF MATHEMATICS EDUCATION
BusaN NATIONAL UNIVERSITY OF EDUCATION
Busan 611-736, KOREA

E-mail address: paek@bnue.ac.kr



