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A NOTE ON DECOMPOSITION OF COMPLETE
EQUIPARTITE GRAPHS INTO GREGARIOUS 6-CYCLES

JunGg RAE CHO

ABSTRACT. In [8], it is shown that the complete multipartite graph Kn2t)
having n partite sets of size 2¢, where n > 6 and ¢t > 1, has a decompo-
sition into gregarious 6-cycles if n = 0,1,3 or 4 (mod 6). Here, a cycle
is called gregarious if it has at most one vertex from any particular par-
tite set. In this paper, when n = 0 or 3 (mod 6), another method using
difference set is presented. Furthermore, when n = 0 (mod 6), the de-
composition obtained in this paper is occ-circular, in the sense that it is
invariant under the mapping which keeps the partite set which is indexed
by oo fixed and permutes the remaining partite sets cyclically.

1. Introduction

Decompositions of graphs into edge-disjoint cycles have been an active re-
search area for many years. Especially, decompositions by cycles of a fixed
length have been considered in a number of different ways. Recently, it was
shown that a complete graph of odd order, or a complete graph of even order
minus an 1-factor, has a decomposition into k-cycles if k divides the number of
edges (see [1], [11] and [12] as well as their references). One of the key factors
for all these works was the cycle decomposition of complete bipartite graphs
obtained by Sotteau ([13]). Many authors began to consider cycle decomposi-
tions with special properties ([4], [5], [9], [10]). Then, Billington and Hoffman
([2]) introduced the notion of a gregarious cycle in a tripartite graph. However,
the definition of gregarious cycles has been modified in later research papers
([2], [4], [7]) for general partite graphs. Recently, Billington and Hoffman ([3])
and Cho and et el. ([7]) independently produced gregarious 4-cycle decompo-
sitions for certain complete multipartite graphs. In [8], Cho and Gould showed
that K, has a decomposition into 6-cycles for all ¢ > 1 if n = 0,1,3 or 4
(mod 6).

In this paper, as a note to the earlier paper ([8]), the author shows another
method of proof when n =0 or 3 (mod 6), which uses the complete difference
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set of a set of numbers. Furthermore, when n = 0 (mod 6), the decomposition
obtained is invariant under the mapping which keeps one partite set fixed and
permutes the remaining partite sets cyclically.

First of all, we make the definition of gregarious cycles clear. We call a
cycle in a multipartite graph gregarious if it has at most one vertex from any
particular partite set.

For simplicity, we will call a graph ~g-decomposable if it is decomposable
into gregarious 6-cycles, and a decomposition into gregarious 6-cycles will be
called a ~yg-decomposition.

Let K(m1,ma,...,m,) denote the complete multipartite graph with partite
sets of size m;, ¢ = 1,...,n. If all sizes are the same and equal to m, we denote
it by Ky(m), and call the graph a complete equipartite graph. Thus, the graph
K, (1) means the complete graph K, with n-vertices.

Lemma 1.1 ([1], [12]). Let n be an odd integer and m be any positive integer
with m < n. Then, K, has a decomposition into m-cycles if and only if m

divides "("2_1).
Lemma 1.2 ([5]). If K(mi,ms,...,my,) is decomposable into cycles, then
my, Ma, ..., My, have the same parity, and furthermore n must be odd if the

parity is odd.

The following lemma is proved in [5] for decompositions into arbitrary (non-
necessarily gregarious) cycles, by the standard “expanding points method”.
However, exactly the same method can be applied for decompositions into
gregarious cycles.

Lemma 1.3. If K(my,ma,...,m,) is decomposable into gregarious k-cycles
for an even integer k, then so is K(mqt,mat,...,my,t) for every integer t > 1.

Proof. Let C be a decomposition of K (my,ma, ..., my) into gregarious k-cycles.
Expand each vertex v of K(mi,ms,...,my) to a set of ¢t vertices v(1), v(?)
.., v® and make edges uPv for i,j = 1,2,...,¢ if wv is an edge of
K(my,ma,...,my). Then, the resulting graph is K(mt,mst,...,myt). For
each k-cycle (v1,vs,...,v) in C, we choose t? gregarious k-cycles

W o, o000, ol ) (A<i<t 1< <)

of K(mat,mat,...,myt). Let C* be the collection of all such gregarious k-cycles
obtained from each cycles in C, then C* is a decomposition of

K(mit,mat,...,mnut)

into gregarious k-cycles. a

2. Decomposition of K, (,,) into gregarious 6-cycles

Lemma 2.1. K, is vys-decomposable if and only if n = 0,1,4 or 9 (mod 12).
If n is one of such an integer then K, () is 7g-decomposable for all m > 1.
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Proof. If K, has decomposition into cycles, the degree of each vertex must be
even. Thus, n should be odd. Now, if n is an odd number, then 6 divides

L";l—) if and only if n = 0,1,4 or 9 (mod 12). The conclusions follows by
Lemmas 1.1 and 1.3. d

It m is odd and K, is y6-decomposable, then n is also odd by Lemma 1.2.

Since 6 must divides the number M of edges of Ky, 12 divides n(n—
1)m?. Since m and n are odd, we have n = 1 (mod 4) and nm = 0 (mod 3).
If n =0 (mod 3) then n = 9 (mod 12) and so K, is vs-decomposable by
Lemma 2.1. So it remains to settle the cases when n = 1 or 5 (mod 12) and
m =0 (mod 3). The decomposition problem for these cases is not settled yet.

In [8], it is proven that, for n > 6, K,,(5) is ys-decomposable if and only if 6
divide 2n(n—1), the number of edges in K, (2) and, in such a case, K (o) is also
~6-decomposable for every positive integer . The authors used a difference set
method for n =1 or 4 (mod 6). Forn = 0 or 3 (mod 6), they presented K, (s
as a join of two graphs which are already known to have ~g-decomposable
and showed that the join is yg-decomposable. We will not explain the join of
graphs here. Anyway, such decompositions do not have nice symmetry as the
case when n = 1 or 4 (mod 6). In the following sections, we use a method using
the difference set of the extended number system Z2° ; to prove the following.

Theorem 2.1. Letn > 6 and n = 0 or 3 (mod 6). There is a systematic
procedure to produce a vg-decomposition of Ky (20) with a nice symmetry for all
t > 1 by using the complete difference set of the extended number system Z2° ;.

Due to Theorem 1.3, we will consider the decomposition of K (2 only in the

following sections.

3. Cycles from feasible sequences of differences

In this section, we assume n = 0 or 3 (mod 6) with n > 6. Let Z5° |, =

{00,0,1,2,...,n—2}. The arithmetic in Z2° , is done modulo n—1 when oo is not
involved. When oo is involved, we make the convention that a£oo = cota = oo
fora=0,1,...,n—2 and oo & oo = 0. In this paper, all arithmetic is done in
> .

Let the partite sets of K,(s) be A = {00,50}, 49 = {0,0}, 4, = {1,1},
..., and A,y = {n—2,n—2}. Thus, elements in Z ; are used as indices of
the partite sets as well as the vertices.

Let D;,_; = {oo,%1,...,+25 } ifnisodd, and D} _, = {00, £1,...,£252}
if n is even. Then, D} _, is a complete set of differences of two distinct numbers
inZ3? ;. Asequence p = (rq,rs,...,7q) of differences in D} _, is called a feasible
sequence, or an f-sequence for simplicity, if

(i) p = (r1,79,...,76), where r; € Di_; \ {oo} for i = 1,2,...,6,
2?21 r; = 0, and Z;’:pri # 0 for p,g with 1 <porg<86, or
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(i) p = (r1,72,73,74,00,00), where r; € D}_; \ {oc} for i = 1,2,3,4, and
T ri#0 for p,g with 1 < porgq<4.

=p
Note that any proper partial sum of consecutive entries of an f-sequence is
NONZEro.

Let p = (ry,r2,...,7¢) be an f-sequence. A sequence g, = (0,s1,...,85)
of elements in Z3° , is called the sequence of initial sums, or an s-sequence for
short, of pif s; =Y 7_, r; for j = 1,2,3,4,5. Thus, if we put so = 0 then s; =
sj—1+r; if 1 < j <5, and s5+r¢ = 0 or s5 = co by the definition of f-sequences.
For example, when n = 12, ¢,, = (0, 3,10,4,8,5) for py = (3,—4,5,4,-3,—5)
and 0,, =(0,1,3,4,2,00) for p; = (1,2,1, -2, 00, 0).

Intuitively, an s-sequence represents the ordering of partite sets which a 6-
cycle traverses, and the feasibility of the corresponding f-sequence guarantees
that the cycle is proper and gregarious. Now, the following lemma is trivial by
definitions.

Lemma 3.1. Let 0 = (0,51,82,...,85) be the sequence of initial sums of a
sequence p = (r1,7s,...,76) of differences. Then, p is an f-sequence if and
only if 0,51, 82, ..., 85 are mutually distinct and Zle ri = 0.

Let ¢ and ¢~ be the mappings of ZS° , into Uiezoe_1 A; defined by ¢t (i) = ¢

and ¢~ (i) = i for all i in Z° |. A flag is a sequence ¢* = (¢o, 1, .., ds)
where each ¢; is ¢ or ¢~ for i = 0,1...,5. Given a flag ¢*, we also use
the same notation ¢* to denote the mapping defined by ¢*(so,s1,...,85) =
(¢0(50), #1(51),...,P5(s5)) for every s-sequence (sg, s1,...,55). Note that

¢*<30,81,---,85>

is a yg-cycle of Ky ).
Let 7 be the permutation (0,1,...,n—2)(c0) on Z ,, that is, 7(1) = i+1

for all 4 in Z§2 ;. In this sense, we may call 7 a translation on Z% ;. We extend
7 to a mapping 7, on 6-cycles of K, (3) by defining

Te(Bo(50), d1(1), ..., 85(s5)) = (do(T(0)), P1(7(51)), ..., P5(7(s5)))
= (¢o(s0+1),p1(s1+1),...,P5(s5+1)).

Note that 777! is the identity mapping and, by convention, 70 is the identity
mapping.

Given an s-sequence o and a flag ¢*, we can generate the class {7i(¢*(0)) |
0 <4 < n—2} containing n— 1 ~g-cycles, which we call an full class gen-
erated from ¢*(o). Sometimes, when n is odd, we need to generate the class
{ri(¢*(0)) [0<i < 22 =1} or {7i(¢"(0)) | "5+ <& < n—2} containing 251
v6-cycles, which we call an half class generated from ¢* (o). The cycle ¢*(o) is
called the starter cycle of the relevant class. For example, if o, = (s, 51, .., 85)
from pP= (Tla T2,.-- 7T6) and ¢* = (¢+7 ¢_7¢—a ¢+: ¢+7 ¢_)a then the yﬁ-cycles
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in the full class generated by ¢*(o) are as below:

(
(
(

) §7 52, 83, S4, S5 >7
; s1+1, s2+1, s3+1, s4+1, ss+1 ),
, s$1+2, s2+2, s3+2, s4+2, s5+2 ),

B e O

(n—1, si+n—1, s3+n—1, s3+n—1, ss+n—1, ss+n—-1 ).

If neither oo nor o0 appears in a column of the above table, that column either
has all ¢ or has all ¢ for i = 0,1,...,n—1. Note that, if g—p = r; then the edge
pq appears exactly once as the first edge of a cycle above. Similarly, each of
the edges pg with ¢—p = 7o, Dq with ¢—p = 73, pg with ¢g—p = r4, pg with
g—p =rs and pq with ¢—p = rg, appears exactly once in the above.

The above procedure is the principal method we are going to use to obtain g-
decompositions of K (3. The main problem then is how to choose appropriate
f-sequences and flags, which will be discussed in the next section.

An edge joining a vertex in A; and a vertex in A; is called an edge of distance
d if i—j = +d for some d in D},_, with 0 < d < %5L. For example, the edges
04, 73, 72 and 83 are all edges of distance 4 in Kjg(3). An edge involving the
vertex oo or o0, such as 003 and 630, are called an edge of infinite distance.
When n is odd and d = "T_l, an edge of distance d is called a diagonal edge.

- - '1);(077) = <0725 77 37 6)Z>
: T*(qﬁ(aﬁ)) = <17370747773>
I Tf(cpi(g'f?)) = <27471755676>

Figure 1 Figure 2
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4. Proof of Theorem 2.1

For i with 1 < i < 252 -2 using differences in {#i,+(i +1), £(i +2)},
we generate two special full classes as follow. Put n = (i,—(i+1),i+2,i+
1,~i,—(i+2)), then we have the s-sequence o, = (0,4,n—2,i+1,2i+2,i+2).
Since 2i+2 < 2(%52-2)+2 = n—4, all entries of o, are mutually distinct.
Thus, n is indeed an f-sequence by Lemma 3.1. Now, we take two special
flags ®7 = (¢%, 0", 6", ¢7,67,¢7) and &5 = (¢7,¢%,67,67,67,¢%), and
generate two full classes C and D from the starter cycles ®}(o,) and ®3(o,),
respectively. These two classes are called the standard classes generated from
n. They are listed below and depicted by the picture in Figure 1.

(€) (0, i, n—2,i+1,2i+2,i+2), (D) {0, i, n—2,141,2i+2,i+2),
( 1, i+1, 0, 44+2,2+3,i+3), ( 1, i+l, 0, i+2,2i+3,i+3),
(2, i+2, 1, i+3,2i+4,i+4), ( 2, i+2, 1, 7+3,2i+3,i+3),
(n—2,i-1,n—3, 4, 2i+1,i+1). (n—2,i—1,n~3, 4, 2i+L,i+1).

The following Lemma is easily checked from the above table.

Lemma 4.1. In the cycles of the classes C and D above, each of the edges of
the form pq, pq, Pq and pg of distance d appears ezactly once for d =i, i+1
and i+2. The classes C and D are invariant under ..

With the differences in {co0,+1,+2}, we produce two f-sequences §; =
(1,2,1,~2,00,00) and 6 = (1,2,—1,2,00,00), and get the corresponding s-
sequences g5, = (0,1,3,4,2,00) and a5, = {(0,1,3,2,4,00). Take two special
flags W] = (¢, 6", 0%,6=,¢=,67) and W = (¢, ¢+, ¢, 6, 6, 6"), and
generate two full classes £y and F; from starter cycles ¥ (os,) and ¥3(os,),
respectively, as below. They are depicted by the picture in Figure 2.

(El) < 0, 1, 3, 4, 2, §>7 (Ez) < 0, 1, 3, 2,4, OO)a
( 1, 2, 4, g: §; §>a < 1 2, Zv g; 9, OO>7
< 2, 3, 5 67 Zv E), < §7 3, 3, Z: 6, OO),
(n—-3,n-2,1,2, 0 =), (n—3, n—2, 1, 0, 2, o),
(n—2, 0, 2,3 1, ). (n=2, 0, 2,1,3, oo).

The following lemma is easily checked from the above table.

Lemma 4.2. In the cycles of the classes E; and E, above, each of the edges
of the form pq, pq, pq and pq of distance d appears exactly once ford =1, 2
and co. The classes E1 and E} are invariant under T,.

We divide the proof of Theorem 2.1 into two cases depending on 7.
Case (1). Suppose n = 0 (mod 6) and put n = 6k (k > 1). Since K, (2) has
4- (%) = 12k(6k~1) edges, we need to produce 2k(6k—1) = 2k(n—1) disjoint
6-cycles. In fact, we will produce 2k full classes. In this case,

Zy ={,0,1,...,6k—=2} and D;_; = {oo,+1,+2,. LLxBk—1))
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Starting with the differences in {co, £1, £2}, we obtain two full classes E; and
E, of Lemma 4.2. If k > 1 then the set D _; \{oo,£1,£2} = { £3,+4,.. ., =(3k—
1)} is not empty. Partition this set into k—1 subsets {34, +(3i+1), £(3i+2)} for
i =1,2,..., k1. For each ¢, we put ; = (3¢, —(3i+1), 3i+2, 3i+1, —3i, — (3i+2))
and generate two standard classes C; and D; from 7;, as in Lemma 4.1. If k = 1,
we do not have these classes. Put

¢ = (U B) U (U e u (Ui o).

Then, by Lemmas 4.1 and 4.2, ¥s-cycles in C* involve each edge of K, (o) exactly
once. Thus, we have the following theorem.

Theorem 4.1. For n = 0 {(mod 6), the class C* above is a yg-decomposition
of K2y and is co-circular in the sense that it is invariant under 7,.

Example 4.1. Let n = 12. Then Df,_;, = {c0,£1,£2,...,£5}. By the proce-
dure above, we have §; = (1,2,1,—2,00,00), d2 = (1,2,~1,2,00,00) and 1, =
(3,-4,5,4,—-3,—5). The corresponding s-sequences are o5, = {0,1,3,4,2, o0},
o5, = (0,1,3,2,4,00) and o, = (0,3,10,4,8,5). The ~s-decomposition is
given below:

(o1, 3 4 2,%), (0,1, 3, 2, 4,00), ( 0, 3,10, 4, 8 B), ( 0, 3,10, 4, 8, 5),
(1,2 4,58 3s), (1,2 4 3, 5,0), (1, 4,0 5 9 86), (I 40 5 9 6),
(2 8 5 86 43), (2, 3,5, 4 6,0), (2 5 1, 6,10, 7y, {( 2, 5, 1, 6,10, 7),
(3 4,6 7 5,3), (3 486 5 7,00), (3,6 2 70, 8), (3 6 2 70, 8),
( 4, 5 7, 8 6,5), (4 5 7, 6, 8c), ( 4, 7,3, 8 1, 9), (4, 7,3, 8 1, 9),
(5 6 80, 73), (5 6 8 7, 90), {5 8 4,9 3,10), (5 8 14,5, 2,10),
(6, 7, 9710, 83), (86, 7, 9, 810,00), ( 6, 9, 5,10, 3, 0), ( 6, 9, 5,10, 3, 0),
(7, 8&10, 0, 9,3), ( 7, 8710, 9, 0,c0), ( 7,10, 6, O, 4, T), ( 7,10, 6, O, 4, 1),
(8 9 0 1,10,%), ( 8, 9, 0,10, 1,c0), ( 8 0, 7, 1, B, 2%, ( 8, 0, 7, 1, 5, 2),
(9,10, 1, 2, 0,5), (9,10, 1, 0, 2,00), ( 9, 1, 8, 2, 6, 3), (9, 1, 8 2,6 3),
(10, 0, 2, 3, 1,%). (10, 0, 2, 1, 3,00). (10, 2, 9, 3, 7, 4). (10, 2, 9, 3, 7, 4).

Case (2). Suppose n = 9. We treat this case as a special case. A 6-cycle
decomposition exists for Ky by Lemma 1, and the following is an example.

(071’677’374>7 (17 2,7,%7475)7 <2737w’07576>7
(0,2,5,7,1,3), (3,5,00,1,4,6), (6,00,2,4,7,0),

where Zg° is used for the vertex set of Ky. From this, we obtain the following
Ye-decomposition of Kg(3) by the method in Lemma 1.3.

<0’ 17 67 77 3’ 4)5 <03 I’ 67 7, 3’ %)5 <§7 ]'7 §7 75 §5 4>7 <§’ l’ ﬁ? 77 §7 é)’
(1,2, 7,00,4,5), (1,2, 7,%,4,5), (1,2 7,004,5), (L2 7,45),
(2,3,00,0,5,6), (2,300,005 6), (2375,0,56), (23,05, 6),
<07 27 57 77 17 3>’ (07 2’ 57 Z’ 1’ §>’ <67 25 g’ 77 I’ 3)7 <§1 2’ 37 Z’ I’ §>7
(3,5,00,1,4,6), (3,500,1,4,8), (35> 1,46), (3,514, 06),
(6,00, 2, 4,7, 0). (6,5,2, 4,7,0). (6,00,2, 4,7,0). (6,50,2, 4,7, 0).

Theorem 4.2. Ky(2) is ys-decomposable.

Case (3). Suppose n = 3 (mod 6) with n > 15 and put n = 6k+3 (k > 2).
Since K,(2) has 4 - (*%%) = 2(6k+3)(6k+2) = 6(2k+1)(n—1) edges, we need
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to produce (2k+1)(n—1) disjoint 6-cycles. In fact, we will produce 2k—1 full
classes and 4 half classes. We have

777, ={00,0,1,...,6k+1} and  D;_; ={o0,+1,£2,...,+£(3k+1)}.

Note that 3k+1 = —(3k+1) in Z$> ;. With the differences in {£(3k-3), £(3k—
2), £(3k—1),£3k, £(3k+1)}, we produce two f-sequences

p1 = (3k—3, —(3k-2), 3k—1, 3k+1, —(3k—1), —3k) and
p2 = (3k-3, 3k—-2, -3k, —(3k-3), 3k, —(3k—2)).
Then, we have
0o, = (0, 3k—3, 6k+1, 3k—2, 6k—1, 3k) and
0p, = (0, 3k—3, 6k—5, 3k—5, 6k, 3k—2).
We take four flags
¢l =(87,07,0%,67,67.9%), S3=(¢7,9%,67,67,0%,¢7),
¢ =(¢7,67,67,67,67,67), Gi=(0,0",07,07,9%,¢").
Since o0,, has diagonal edges, we need to generate half classes from it, instead

of full classes, to avoid double appearances of edges of the form pq or pg. We
generate the following 4 half classes from o,, and the above four flags.

Fy = {rl(#7(05,)) | 0<i < 251 — 1}, Fy = {ri(¢3(0,,)) |0 <i < 252 -1},
Fy = {r(¢3(00,) | 252 <i<n =2}, Fi={ri(¢i(0,)) | 25t <i<n -2}

The 7g-cycles in these classes are as below. Note that 6k+2 = 0 and "T_l -1=
3k.

(F1) ( O, 3k—3,6k+1,3k—2,6k—1, 3k ), (F3) ( O, 3k—3,6k+1,3k—2,6k—1, 3k ),
( 1, 3%-=2, 0, 3k—1, 6k, 3k+1), ( 1, 3k-2, 0, 3k—1, 6k, 3k+1),
( 3, 3k—1, 1, 3k, 6k+1,3k+2), ( 3, 3k-1, T, 38k, 6k+1,3k+2),

, 6k—3,3k—1,6k—2,3k—3, 6k ).

( 3k, 6k—3,3k—1,6k—2,3k—3, 6k ). {

w

(F2) (3k+1,8k—2, 3k, 6k—1,3k—2,6k+1), (F4) (3k+1,6k—2, 3k, Bk—1,3k—2,6k+1),
(3k+2,6k—1,3k+1, 6k, 3k—1, 0 ), (3k+2,6k—1,3k+1, 6k, 3k—1, 0 ),
(3k+3, 6k, 3k+2,6k+1, 3k, 1 ), (3k+38, 6k, 3k+2,6k+1, 3k 1y,
(6k+1,3k-4, 6k, 3k—3,6k—2, 36—1). (6k+1,3k—4, 6k, 3k—3,6k—2,3k—1).

Then, in the vg-cycles of Fy, Fy, F3 and Fy, each of the following edges appears
exactly once. Note that an edge pg with ¢ — p = r and an edge gp with
p — q = —r are the same edge.

(i) Diagonal edges, i.e., edges of distance 3k+1. Edges pq, 5§, pq, g
with ¢ — p = 3k+1 appear as the fourth edges in F3, Fy, Fy, Fy,
respectively.

(ii) Edges of distance 3k—1. Edges pq with ¢ — p = 3k—1 appear as the
third edges in F; or as the fifth edges in Fy in the form ¢p. Edges pg
appear as the third edges in Fy or as the fifth edges in F5 in the form
gp- Edges pg appear as the third edges in Fy or as the fifth edges in
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F; in the form gp. Edges pq appear as the third edges in F3 or as the
fifth edges in F} in the form ¢p.

(iii) Edges pg and pg with ¢ — p = 3k. Edges pq appear in the form gp
as the last edges in F5 or F3. Edges Dq appear in the form ¢ as the
last edges in Fy or Fy.

(iv) Edges pq and pg with ¢ — p = 3k—2. Edges Pq appear in the form
gD as the second edges in Fy or F». Edges pq appear in the form gp
as the second edges in F3 or Fj.

(v) Edges pg and pg with ¢ — p = 3k—3. Edges pq appear as the first
edges in F3 or Fy. Edges Pq appear as the first edges in Fy or Fs.

Next, we take another flag ¢f = (¢7,07,07, 07, 0™, o), and generate the full
class
Fy = {7i(¢3(0,)) |0 <i < m— 2}
from o,, and ¢f. The g-cycles in this class are as below:
(F5) ( 0, 3k-3, 6k—5, 3k—5, 6k, 3k—2),
( 1, 3k—2, 6k—4, 3k—4, 6k+1, 3k—1),
( 2, 3k-1, 6k-3, 3k—3, 0, 3k ),

( 3k, 6k—3, 3k—7, 6k—5, 3k—2, 6k—2),
(3k+1, 6k—2, 3k—6, 6k—4, 3k—1, 6k—1),

( 6k 3k—5, 6k—7, 3k—7, 6k—2, 3k—4),
(6k—+1, 3k—4, 6k—6, 3k—6, 6k—1, 3k—3).

In the yg-cycles of Fs, each of the following edges appears exactly once.

(i) Edges of the form pq or p§ with ¢ — p = 3k. Edges pq appear as the

fifth edges. Edges p§ appear in the form §p as the third edges.
(ii) Edges of the form pq or pg with ¢ — p = 3k — 2. Edges pq appear in
the form ¢ p as the last edges. Edges pg appear as the second edges.
(i) Edges of the form pq or pg with ¢ — p = 3k—3. Edges pq appear in
the form ¢ p as the fourth edges. Edges p, g appear as the first edges.
Therefore, in the ~g-cycles of U?:l F;, every edge of distance 3k—3,3k~2, 3k~
1,3k or 3k+1 appears exactly once. Note that Fy, Fp, F3, Fy are not invariant

under 7%, while Fj is.

Now, starting with the differences in {oo, £1, £2}, we obtain two full classes
E; and E;, as in Lemma 4.2. Then, in the ~g-cycles of these classes, every
edge of distance 1,2 or co appears exactly once. Note that, since k£ > 2, we
have 2 < 3k—3 and so cycles in E; and cycles in F; are disjoint for 7 = 1,2 and
j=1,2,3,4,5.

If £ > 3, the set

D\ {00, £1, 42, +(3k—3),...,£(3k+1)} = {+3,+4,..., +(3k—4)}

is not empty. Partition this set into k—2 subsets {£3i, +(3i+1), £(3i+2)} for
i=1,2,...,k—2. For each i, put ; = (3i, —(3i+1), 3i+2, 3i+1, —3i, —(3i+2))
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and generate two standard classes C; and D; from 7;, as in Lemma 4.1. Then,
in the v¢-cycles in C; and D;, every edge of distance 3i, 3i+1 and 3i+2 appears
exactly once. If £ = 2, we do not have these classes.

Finally, put C* = (Uf=1 E) U (Ule F) U (U;:f Ci) U (Uf;f Di). Then,
ve6-cycles in C* involve each edge of every distance in K (2 exactly once. Thus,
we have the following theorem.

Theorem 4.3. For n = 3 (mod 6) with n > 15, the class C* above is a ~g-
decomposition of Ky ).

Example 4.2. Let n = 15. Using hexadecimal digits, let Z$5 = {00, 0,
1,...,9, a, b, ¢, d}. We have Dy = {xoo,+£l1,...,4£7}. Starting with f-
sequences p1 = (3,—4,5,7,—5,—6) and p» = (3,4,—6,-3,6,—4), we obtain
s-sequences o, = (0,3,d,4,b,6) and 0,, = (0,3,7,1,c,4). We generate classes
Fy, B>, F3,Fy, F5 as in Case (3). From f-sequences §; = (1,2,1, -2, 00, 00)
and &> = (1,2,-1,2,00,00), we obtain s-sequences o,, = (0,1,3,4,2, c0) and
o5, = (0,1,3,2,3,00). We generate two full classes F; and E, as in Lemma
4.2. These classes constitute a ys-decomposition of K- 15(2) and are listed below.

(0,3,d,4,b,6), (0,3,d,4,5,8), (0,37, 1,¢,4), (0,1,342%), (0,1,32400),
(1,£,0,5,5,7), (1,4,0,5¢,7), (1,4,82,4d,5), (1,24,53%), (1,24,35,00),
(2,8,1,6,d,8), (2,51,6,d,8), (2,59,3,06), (2358,45), (2351%60),
(3,8,2,7,0,9), (3,6,2,7,0,9), (3,8,a,4,1,7), (3,4,67,5,5), (3,465,700,
(4,7,3,81T,a), (4,7,3,81,3), (4,7,5,52,8), (4,5 78,86,5), (4,5,7,6,8,00),
(5,8,4,9,2,b), (5,8,4,9,2,b), (58756,39), (56,879,75), (56587090),
(86,9,5,2,3,¢), (8,9,5,4,3,2), (6,9,d,7 4,a), (6,7,9,a,8,5), (86,7,9,8,a,00),
(7,2,6,b,4,d), (7,0,6,b,4,d), (7,3,0,855b), (7,84a,5085), (7,833,b00),
(8,5,7,¢,50), (857,%5,0), (8571,96c) (895775), (509 57co00),
(9,7,8,d,6,1), (9,¢,8d,6,1), (9,7,%,4,7,d), (9a,¢4,5), {(9a,gbdoo),
(2,4,9,0,7,2). (%4,5,0,7,2), (a,4,3,580). (a,5d0,55) (&bd7z000),
(8,0,0,1,83), (5,0,7,1,83), (b0,4,¢91), (bec071,45), (be0,d1,00},
(2,1,6,2,9,7), (21,5,2,9,4), (¢1,5da,2), (cd1,20,8), (%d 10200},
(d.2,¢,3,a5). (2,2,53,¢,5). (d,2,505,3). (d4,0,23,1,5) (d,0,31,3,00).
Proof of Theorem 2.1. By Theorems 4.1 - 4.3 and Theorem 1.3. O
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