ON THE COMMUTANT OF MULTIPLICATION OPERATORS WITH ANALYTIC POLYNOMIAL SYMBOLS

B. KHANI ROBATI

ABSTRACT. Let $\mathcal B$ be a certain Banach space consisting of analytic functions defined on a bounded domain G in the complex plane. Let φ be an analytic polynomial or a rational function and let M_{φ} denote the operator of multiplication by φ . Under certain condition on φ and G, we characterize the commutant of M_{φ} that is the set of all bounded operators T such that $TM_{\varphi}=M_{\varphi}T$. We show that $T=M_{\Psi}$ for some function Ψ in $\mathcal B$

1. Introduction

Let \mathcal{B} be a Banach space consisting of analytic functions defined on a bounded domain G in the complex plane such that $1 \in \mathcal{B}, z\mathcal{B} \subset \mathcal{B}$, and for every $\lambda \in G$ the evaluation functional at λ , $e_{\lambda} : \mathcal{B} \to \mathbb{C}$, given by $f \mapsto f(\lambda)$, is bounded. Also assume $\operatorname{ran}(M_z - \lambda) = \ker e_{\lambda}$ for every $\lambda \in G$ and if $f \in \mathcal{B}$ and $|f(\lambda)| > c > 0$ for every $\lambda \in G$, then $\frac{1}{f}$ is a multiplier of \mathcal{B} .

Throughout this article unless otherwise is explicitly stated, we assume that G is a bounded domain in the complex plane and by a Banach space of analytic functions \mathcal{B} on G we mean one satisfying the above conditions.

Some examples of such spaces are as follows:

- 1) The algebra A(G) which is the algebra of all continuous functions on the closure of G that are analytic on G.
- 2) The Bergman space of analytic functions defined on G, $L_a^P(G)$ for $1 \le p \le \infty$.
- 3) The spaces D_{α} of all functions $f(z) = \sum \hat{f}(n)z^n$, holomorphic in **D**, for which

$$||f||_{\alpha}^{2} = \sum (n+1)^{\alpha} |\hat{f}(n)|^{2} < \infty$$

for every $\alpha \geq 1$ or $\alpha \leq 0$.

Received August 10, 2006; Revised August 28, 2007.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47B35; Secondary 47B38.

Key words and phrases. commutant, multiplication operators, Banach space of analytic functions, univalent function, bounded point evaluation.

- 4) The analytic Lipschitz spaces $Lip(\alpha, \overline{G})$ for $0 < \alpha < 1$, i.e., the space of all analytic functions defined on G that satisfy a Lipschitz condition of order α .
- 5) The subspace $lip(\alpha, \overline{G})$ of $Lip(\alpha, \overline{G})$ consisting of functions f in $Lip(\alpha, \overline{G})$ for which

$$\lim_{z \to w} \frac{|f(z) - f(w)|}{|z - w|^{\alpha}} = 0.$$

6) The classical Hardy spaces H^p for 1 .

In this article r(z) = p(z)/q(z) is a rational function such that p(z) and q(z) are polynomials without common factors. Also the poles of r(z) which are exactly the zeros of q(z) are off \overline{G} . Let r be a rational function and $\lambda \in \overline{G}$. If r(z) has a zero of order one at $\lambda \in \overline{G}$ and $r(z) \neq 0$ for all $z \neq \lambda$ in \overline{G} , then we say that r has only a simple zero in \overline{G} .

A complex valued function ϕ defined on G is called a multiplier of \mathcal{B} if $\phi\mathcal{B}\subset\mathcal{B}$, i.e., ϕf is in \mathcal{B} for every f in \mathcal{B} , and the set of all multipliers of \mathcal{B} is denoted by $\mathcal{M}(\mathcal{B})$. By the Closed Graph Theorem, it is easy to see that every multiplier ϕ defines a bounded linear operator $M_{\phi}: f \to \phi f$ on \mathcal{B} . The algebra of all bounded operators on \mathcal{B} is denoted by $L(\mathcal{B})$. Let $T \in L(\mathcal{B})$ and $TM_z = M_z T$, it is easy to see that $T = M_{\varphi}$ for some function $\varphi \in \mathcal{M}(\mathcal{B})$. A good source on this topics is [7]. We denote by $\{M_{\varphi}\}'$ the set of operators $T \in L(\mathcal{B})$ such that $M_{\varphi}T = TM_{\varphi}$, i.e., the commutant of M_{φ} .

The commutant of Toeplitz operator on certain Hilbert spaces of functions was studied in several papers. See, for example, [1-4, 8]. Also the commutant of multiplication operators on Banach spaces of functions were investigated for certain multiplication operators. See for instance [5-7, 9-11]. In section 2 of this article we investigate the commutant of the operator M_{φ} , when φ is an analytic polynomial or a rational function. By the Implicit Function Theorem under certain condition on φ and G, we characterize the commutant of M_{φ} . In fact, when p is a polynomial of degree one it is an univalent function and it is well known that $\{M_p\}' = \{M_{\Psi}: \Psi \in \mathcal{M}(\mathcal{B})\}$. Hence we consider certain polynomials with degree $n \geq 2$. We conclude the introduction with a theorem that will be used in the proof of Proposition 2.2.

Theorem 1.1. Let \mathcal{B} be a Banach space of analytic functions and let $\phi \in \mathcal{M}(\mathcal{B}) \cap A(G)$. If for some $\lambda \in G$, $\phi - \phi(\lambda)$ has only a simple zero in \overline{G} , then $T(f)(\lambda) = T(1)(\lambda)f(\lambda)$ for each $f \in \mathcal{B}$ and every $T \in \{M_{\phi}\}'$.

Proof. See
$$[6, Theorem 2.1]$$
.

2. The main results

In [4] Ž. Čučković and Dashan Fan have shown that if $G = \{z \in \mathbb{C} : r < |z| < 1\}$, $\mathcal{B} = L_a^2(G)$ and $p(z) = z + a_2 z^2 + \cdots + a_n z^n$, where $a_i \geq 0$ and p(z) - p(1) has n distinct zeros, then $\{M_p\}' = \{M_{\Psi} : \Psi \in \mathcal{M}(\mathcal{B})\}$. In this

section we extend the result obtained in [4] to various domains G, to Banach spaces of analytic functions and to certain polynomial or rational symbols. The proof of the next theorem is similar to a part of the proof of Theorem 4 in [4].

Theorem 2.1. Suppose that G is an open set in \mathbb{C} . Let r(z) = p(z)/q(z) be a rational function with poles off \overline{G} , let $n = \max\{\deg(p), \deg(q)\} \geq 2$ and let $\lambda \in \overline{G}$. If $r(z) - r(\lambda)$ has n - 1 distinct zeros outside of \overline{G} , then there is an open set $U \subseteq G$ such that for every $w \in U$ the function r(z) - r(w) has only a simple zero in \overline{G} .

Proof. Let A be the set of zeros of q and let $\Omega = \mathbb{C} - A$. Assume that $z_1, z_2, \ldots, z_{n-1}$ are distinct zeros of $r(z) - r(\lambda)$ outside \overline{G} . We now choose open subsets $\Omega_1, \Omega_2, \ldots, \Omega_{n-1}$ of Ω such that $z_i \in \Omega_i$ and $\Omega_i \cap \overline{G} = \emptyset$ for every $i = 1, 2, \ldots, n-1$, and $\Omega_i \cap \Omega_j = \emptyset$ for $i \neq j$. Assume that $F: \Omega \times \Omega \to \mathbb{C}$ defined by F(z, w) = r(z) - r(w). Then $F(\lambda, w)$ has n-1 zeros outside \overline{G} . Since by the hypothesis the zeros of $F(\lambda, w)$ are simple, we have

$$\frac{\partial F}{\partial w}(\lambda, z_i) = (r(\lambda) - r(w))'(z_i) \neq 0 \quad \text{for } i = 1, 2, \dots, n - 1.$$

Thus by the Implicit Function Theorem, for each i, there exists an open neighborhood V_i and a continuous map $\varphi_i: V_i \to \mathbb{C}$ such that $\lambda \in V_i$, $\varphi_i(\lambda) = z_i$ and $F(z, \varphi_i(z)) = 0$ for every $z \in V_i$ and i = 1, 2, ..., n-1. Since φ_i is continuous, there exists an open subset U_i of V_i such that $\lambda \in U_i$ and $\varphi_i(U_i) \subseteq \Omega_i$. Let $U_0 = \bigcap_{i=1}^{n-1} U_i$. Then $U = U_0 \cap G$ is a nonempty open subset of G. Suppose that $w \in U$. Then $w \in U_i$ for every i and so, $(w, \varphi_1(w)), (w, \varphi_2(w)), ..., (w, \varphi_{n-1}(w))$ are zeros of F. Hence $\varphi_1(w), \varphi_2(w), ..., \varphi_{n-1}(w)$ are n-1 distinct roots of the equation r(z) - r(w) = 0, which are outside of \overline{G} .

Proposition 2.2. Let \mathcal{B} be a Banach space of analytic functions on G. If r(z) satisfies the conditions of Theorem 2.1, then

$$\{M_r\}^{'}=\{M_{\Psi}:\ \Psi\in\mathcal{M}(\mathcal{B})\}.$$

Proof. By Theorem 2.1, there is an open set $U \subseteq G$ such that for every $w \in U$ the function r(z) - r(w) has only a simple zero in \overline{G} . Assume that $T \in \{M_r\}'$. By Theorem 1.1, for every $w \in U$ and each $f \in \mathcal{B}$, we have T(f)(w) = T(1)(w)f(w). Since two analytic function T(f) and T(1)f are equal on U and G is connected, we have T(f) = T(1)f for all $f \in \mathcal{B}$, and the proof is complete.

Example 2.3. Let \mathcal{B} be a Banach space of analytic functions on D, where D is the unit disk and let $r(z) = z^n/(2-z)$ for some positive integer $n \geq 2$. It is easy to see that |r(1)| = 1 and |r(z)| < 1 for $z \in \overline{D} - \{1\}$. Using Theorem 2.1, with $\lambda = 1$ and Proposition 2.2, we have

$$\{M_r\}^{'}=\{M_{\Psi}:\ \Psi\in\mathcal{M}(\mathcal{B})\}.$$

In the reminder of this article we assume that $G \subset D$ and $\varphi(z)$ is a polynomial.

Theorem 2.4. Let \mathcal{B} be a Banach space of analytic functions on G. Let $n \geq 2$ be an integer, $a \neq 0$ and b be two complex numbers, and let $p(z) = z^n + az + b$. Then

- a) If $0 \in \overline{G}$ and |a| > 1, then $\{M_p\}' = \{M_{\Psi} : \Psi \in \mathcal{M}(\mathcal{B})\}.$
- b) If $a=|a|e^{i\theta}$ belongs to \overline{D} and $e^{\frac{i\theta}{n-1}}\in\overline{G}$, then $\{M_p\}'=\{M_\Psi: \Psi\in\mathcal{M}(\mathcal{B})\}$.

Proof. a) If in Theorem 2.1 we set $\lambda = 0$, then it is easy to see that $p(z) - p(\lambda) = z^n + az$ has n - 1 distinct zeros outside of \overline{D} . Hence by Proposition 2.2, we have $\{M_p\}' = \{M_{\Psi}: \Psi \in \mathcal{M}(\mathcal{B})\}.$

b) Set $\lambda=e^{\frac{i\theta}{n-1}}$, we can see that $p(\lambda)=p(z)$ if and only if $\lambda^n+a\lambda=z^n+az$. But

$$|\lambda^n + a\lambda| = |\lambda| |\lambda^{n-1} + a| = |e^{i\theta} + |a| |e^{i\theta}| = 1 + |a|.$$

So if |z|<1, then $|z^n+az|\leq |z^n|+|a||z|<1+|a|=|\lambda^n+a\lambda|$, which implies that z isn't a zero of $p(z)-p(\lambda)$. In the next step assume that $z_0\in\partial D$ is a root of equation $p(z)-p(\lambda)=0$. Therefore, $|z_0^{n-1}+a|=|z_0^n+az_0|=|\lambda^n+a\lambda|=1+|a|=|z_0^{n-1}|+|a|$. Thus $\arg z_0^{n-1}=\arg a+2k\pi$ for some integer k. Since $|z_0|=1$, we have $z_0^{n-1}=\lambda^{n-1}$. It follows that $(z_0-\lambda)(a+\lambda^{n-1})=0$, which implies that $z_0=\lambda$. To complete the proof of the theorem, it suffices to show that n-1 zeros of $p(z)-p(\lambda)$ outside of \overline{D} are distinct. Since the absolute value of each zero of $p(z)-p(\lambda)$ outside of \overline{D} are distinct. Hence by Proposition 2.2, the proof is complete.

Theorem 2.5. Let \mathcal{B} be a Banach spaces of analytic functions on G. Let $n \geq 2$ be an integer, $a \neq 0$ and b be two complex numbers, and let $p(z) = z^n + az^{n-1} + b$. Also assume that $a = |a|e^{i\theta_0}$ and $e^{i\theta_0} \in \overline{G}$. If $(n-1)^{n-1}|a^n| \neq n^n(1+|a|)$, then

$$\{M_p\}^{'}=\{M_{\Psi}:\ \Psi\in\mathcal{M}(\mathcal{B})\}.$$

Proof. Set $\lambda=e^{i\theta_0}$, we can see that $p(\lambda)=p(z)$ if and only if $\lambda^n+a\lambda^{n-1}=z^n+az^{n-1}$. But

$$|\lambda^n + a\lambda^{n-1}| = |e^{in\theta_0} + |a|e^{in\theta_0}| = 1 + |a|.$$

So if |z| < 1, then $|z^n + az^{n-1}| \le |z^n| + |a| |z^{n-1}| < 1 + |a| = |\lambda^n + a\lambda^{n-1}|$, which implies that z isn't a zero of $p(z) - p(\lambda)$. Now assume that $z_0 \in \partial D$ is a root of equation $p(z) - p(\lambda) = 0$. Therefore, $|z_0 + a| = |z_0^n + az_0^{n-1}| = |\lambda^n + a\lambda^{n-1}| = 1 + |a| = |z_0| + |a|$. Thus $\operatorname{Arg} z_0 = \operatorname{Arg}(a)$. Since $|z_0| = 1$, we have $z_0 = \lambda$. To complete the proof of the theorem we need only to show that n-1 zeros of $p(z) - p(\lambda)$ outside of \overline{D} are distinct. Since the only nonzero root of the equation p'(z) = 0 is $\frac{-a(n-1)}{n}$, it suffices to show that $\frac{-a(n-1)}{n}$ is not a root of equation $p(z) - p(\lambda) = 0$. But $p(\frac{-a(n-1)}{n}) = p(\lambda)$ implies

that $(-1)^{n-1}a^n\frac{(n-1)^{n-1}}{n^{n-1}}=n(e^{in\theta_0}+|a|e^{in\theta_0})$ and so $|a|^n\frac{(n-1)^{n-1}}{n^{n-1}}=n(1+|a|)$. But by assumption this relation is not true. Therefore, we conclude that n-1 zeros of $p(z)-p(\lambda)$ outside \overline{D} are distinct and by Proposition 2.2, the proof is complete.

Theorem 2.6. Let \mathcal{B} be a Banach spaces of analytic functions on G and let $p = a_0 + a_1z + a_2z^2 + \cdots + a_nz^n$ be a polynomial of degree $n \geq 2$ such that $a_1 \neq 0$. If there is $z_0 \in \partial D \cap \partial G$ such that all nonzero terms $a_iz_0^i$ for $i \geq 1$ are positive or all are negative also $p(z) - p(z_0)$ has n distinct zeros, then $\{M_p\}' = \{M_{\Psi}: \Psi \in \mathcal{M}(\mathcal{B})\}.$

Proof. By assumption $p(z_0) - a_0$ is real and $|p(z_0) - a_0| = |a_1 z_0| + |a_2 z_0| + \cdots + |a_n z_0|$. Hence $p(z) - p(z_0) = 0$ implies that

$$|a_1z + a_2z^2 + \cdots + a_nz^n| = |a_1| + |a_2| + \cdots + |a_n|$$
.

For $z \in D$, we have

$$|a_1z + a_2z^2 + \cdots + a_nz^n| < |a_1| + |a_2| + \cdots + |a_n|$$
.

So $p(z) - p(z_0)$ has no zero in D. On the other hand if $z \in \partial D$ is a zero of $p(z) - p(z_0)$, then

$$|a_1| + |a_2| + \dots + |a_n| = |a_1z| + |a_2z^2| + \dots + |a_nz^n|$$

= $|a_1z + a_2z^2 + \dots + a_nz^n|$.

Hence $\operatorname{Arg}(a_1z+a_2z^2+\cdots+a_nz^n)=\operatorname{Arg}\ (a_1z).$ Since $p(z)=p(z_0),$ we have $p(z)-a_0=p(z_0)-a_0.$ Thus $p(z)-a_0$ is a real number and also $\operatorname{Arg}(a_1z+a_2z^2+\cdots+a_nz^n)=\operatorname{Arg}(a_1z_0).$ Hence $\operatorname{Arg}(a_1z)=\operatorname{Arg}(a_1z_0)$ and since |z|=1, we have $z=z_0.$ Therefore, $p(z)-p(z_0)$ has n-1 distinct zeros outside \overline{D} and by Proposition 2.2, the proof is complete.

An easy application of the above theorem is when p is a polynomial of degree 3 such that its coefficients satisfy the conditions of Theorem 2.6. Let a and b be zeros of p'(z). If p(a) and p(b) are not equal to $p(z_0)$, then $\{M_p\}' = \{M_{\Psi} : \Psi \in \mathcal{M}(\mathcal{B})\}$.

Using the same argument as used in the proof of Theorem 2.6, we have the following two propositions.

Proposition 2.7. Let \mathcal{B} be a Banach spaces of analytic functions on G. Let $p = a_0 + a_1z + a_2z^2 + \cdots + a_nz^n$ be a polynomial of degree $n \geq 2$ such that $a_1 \neq 0$ and $\operatorname{Arg} a_i = \theta_0$ for $a_i \neq 0$ with $i \geq 1$. If p(z) - p(1) has n distinct zeros and $1 \in \partial G$, then $\{M_p\}' = \{M_{\Psi}: \Psi \in \mathcal{M}(\mathcal{B})\}$.

Proposition 2.8. Let \mathcal{B} be a Banach spaces of analytic functions on G and let $p = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n$ be a polynomial of degree $n \geq 2$ such that $a_1 \neq 0$. Also assume that for each $a_i \neq 0$ with $i \geq 1$, $\operatorname{Arg} a_i = \theta_0$ for i odd and $\operatorname{Arg} a_i = \theta_0 + \pi$ or $\operatorname{Arg} a_i = \theta_0 - \pi$ for i even . If p(z) - p(-1) has n distinct zeros and $-1 \in \partial G$, then $\{M_p\}' = \{M_{\Psi}: \Psi \in \mathcal{M}(\mathcal{B})\}$.

Theorem 2.9. Let \mathcal{B} be a Banach spaces of analytic functions on G, and let $p=a_0+a_1z+a_2z^2+\cdots+a_nz^n$ be a polynomial of degree $n\geq 2$. If the maximum value of |p(z)| on \overline{D} is obtained at a unique point $z_0\in\partial G$ and $|a_1|+2|a_2|+3|a_3|+\cdots+(n-1)|a_{n-1}|< n|a_n|$ or none of the zeros of p'(z) is a root of equation $p(z)-p(z_0)=0$, then $\{M_p\}'=\{M_\Psi: \Psi\in\mathcal{M}(\mathcal{B})\}$.

Proof. By assumption $|p(z)| < |p(z_0)|$ for all $z \in \overline{D} - \{z_0\}$. Hence $p(z) - p(z_0)$ has no zero in $\overline{G} - \{z_0\}$. If none of the zeros of p'(z) is a root of equation $p(z) - p(z_0) = 0$, then n-1 zeros of $p(z) - p(z_0)$ outside \overline{D} , and therefore outside \overline{G} are distinct. Thus by Proposition 2.2, the proof is complete. Otherwise by assumption $|a_1| + 2|a_2| + 3|a_3| + \cdots + (n-1)|a_{n-1}| < n|a_n|$. Hence $|p'(z) - na_nz^{n-1}| < |na_nz^{n-1}|$ for all $z \in \partial D$ and therefore by the Rouche's Theorem p'(z) has n-1 zeros inside D, which implies that n-1 zeros of $p(z) - p(z_0)$ outside \overline{D} are distinct. Now by Proposition 2.2, the proof is complete.

Corollary 2.10. Let \mathcal{B} be a Banach spaces of analytic functions on G, let $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_0$ be a polynomial of degree $n \geq 2$ with nonnegative real coefficients and let $1 \in \partial G$. If there is a positive integer $m \leq n$ such that a_m and a_{m-1} are not equal to zero and

$$|a_1| + 2 |a_2| + 3 |a_3| + \cdots + (n-1) |a_{n-1}| < n |a_n|,$$

then $\{M_p\}' = \{M_{\Psi}: \ \Psi \in \mathcal{M}(\mathcal{B})\}.$

Proof. It is easy to see that |p(1)| > |p(z)| for all $z \in \overline{D} - \{1\}$. Indeed, if $z = e^{i\theta}$ for some θ , $-\pi < \theta \le \pi$ and |p(z)| = |p(1)|, we have

$$|a_m e^{im\theta} + a_{m-1} e^{i(m-1)\theta}| = a_m + a_{m-1}.$$

Therefore, $m\theta=(m-1)\theta+2k\pi$ for some integer k. Hence z=1, and by Theorem 2.9, the proof is complete.

In the next example we present three applications of some of the above theorems.

Example 2.11. Let \mathcal{B} be a Banach spaces of analytic functions on G.

- a) Let $p(z) = -z^3 + 6z^2 9z + 5$, and let $z_0 = -1$ belongs to \overline{G} . Since $p'(z) = -3z^2 + 12z 9$ has zeros 1 and 3, which aren't the roots of equation p(z) p(-1) = 0 by Theorem 2.6, or Proposition 2.8, we have $\{M_p\}' = \{M_{\Psi} : \Psi \in \mathcal{M}(\mathcal{B})\}$.
- b) Let $p(z)=3z^7+2z^5+4z^2+5$ and let $z_0=1$ belongs to \overline{G} . Then by Theorem 2.9, we have $\{M_p\}^{'}=\{M_{\Psi}:\ \Psi\in\mathcal{M}(\mathcal{B})\}.$
- c) Let $p(z) = iz^3 + 3iz^2 + 3iz 3$ and $1 \in \overline{G}$. Since $p'(z) = 3iz^2 + 6iz + 3i$ has a zero of order 2 at z = -1 and -1 isn't a root of equation p(z) p(1) = 0, we conclude that the roots of this equation are distinct. Hence by Proposition 2.7, we have $\{M_p\}' = \{M_{\Psi}: \Psi \in \mathcal{M}(\mathcal{B})\}$.

References

- [1] S. Axler and Ž. Cučković, Commuting Toeplitz operators with harmonic symbols, Integral Equations Operator Theory 14 (1991), no. 1, 1-12.
- [2] S. Axler, Ž. Čučković, and N. V. Rao, Commutants of analytic Toeplitz operators on the Bergman space, Proc. Amer. Math. Soc. 128 (2000), no. 7, 1951-1953.
- [3] Ž. Cučković, Commutants of Toeplitz operators on the Bergman space, Pacific J. Math. 162 (1994), no. 2, 277-285.
- [4] Ž. Cučković and D. S. Fan, Commutants of Toeplitz operators on the ball and annulus, Glasgow Math. J. 37 (1995), no. 3, 303-309.
- [5] B. K. Robati and S. M. Vaezpour, On the commutant of operators of multiplication by univalent functions, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2379-2383.
- [6] _____, On the commutant of multiplication operators with analytic symbols, Rocky Mountain J. Math. 33 (2003), no. 3, 1049-1056.
- [7] S. Richter, Invariant subspaces in Banach spaces of analytic functions, Trans. Amer. Math. Soc. 304 (1987), no. 2, 585–616.
- [8] A. L. Shields and L. J. Wallen, The commutants of certain Hilbert space operators, Indiana Univ. Math. J. 20 (1970/1971), 777-788.
- [9] J. E. Thomson, The commutants of certain analytic Toeplitz operators, Proc. Amer. Math. Soc. 54 (1976), 165-169.
- [10] K. Zhu, Reducing subspaces for a class of multiplication operators, J. London Math. Soc. (2) 62 (2000), no. 2, 553-568.
- [11] ______, Irreducible multiplication operators on spaces of analytic functions, J. Operator Theory **51** (2004), no. 2, 377–385.

Department of Mathematics

College of Sciences

SHIRAZ UNIVERSITY

SHIRAZ 71454, IRAN

E-mail address: khani@susc.ac.ir