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ON THE COMMUTANT OF MULTIPLICATION OPERATORS
WITH ANALYTIC POLYNOMIAL SYMBOLS

B. KHANI ROBATI

ABSTRACT. Let B be a certain Banach space consisting of analytic func-
tions defined on a bounded domain G in the complex plane. Let ¢ be an
analytic polynomial or a rational function and let M, denote the operator
of multiplication by ¢. Under certain condition on ¢ and G, we charac-
terize the commutant of M, that is the set of all bounded operators T
such that TM, = M,T. We show that T' = My for some function ¥ in
B.

1. Introduction

Let B be a Banach space consisting of analytic functions defined on a
bounded domain G in the complex plane such that 1 € B,zB C B, and for
every A € GG the evaluation functional at A, ey : B — C, given by f — f(}), is
bounded. Also assume ran(M, — \) = kere, for every A € G and if f € B and
|f(M)] > ¢ >0 for every A € G, then ; is a multiplier of B.

Throughout this article unless otherwise is explicitly stated, we assume that
G is a bounded domain in the complex plane and by a Banach space of analytic
functions B on G we mean one satisfying the above conditions.

Some examples of such spaces are as follows:

1) The algebra A(G) which is the algebra of all continuous functions on the
closure of G that are analytic on G.

2) The Bergman space of analytic functions defined on G, LF(G) for 1 <
p < oo.

3) The spaces D, of all functions f(z) = 3" f(n)z", holomorphic in D, for
which

£ 152=Y (a+ )| f(m)]* < oo

for every a > 1 or a < 0.
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4) The analytic Lipschitz spaces Lip(a,G) for 0 < a < 1, i.e., the space of
all analytic functions defined on G that satisfy a Lipschitz condition of order
a.

5) The subspace lip(a, G) of Lip(a, G) consisting of functions f in Lip(a, G)

for which
lim M = 0.

o
2w |z—w|

6) The classical Hardy spaces H? for 1 < p < 0.

In this article r(z) = p(2)/q(z) is a rational function such that p(z) and
q(z) are polynomials without common factors. Also the poles of 7(z) which are
exactly the zeros of g(z) are off G. Let r be a rational function and A € G. If
(2) has a zero of order one at A € G and r(z) # 0 for all z # X in G, then we
say that r has only a simple zero in G.

A complex valued function ¢ defined on G is called a multiplier of B if
¢B C B, i.e., ¢f is in B for every f in B, and the set of all multipliers of B
is denoted by M(B). By the Closed Graph Theorem, it is easy to see that
every multiplier ¢ defines a bounded linear operator My : f — ¢f on B. The
algebra of all bounded operators on B is denoted by L(B). Let T € L(B) and
TM, = M.T, it is easy to see that T = M, for some function ¢ € M(B).
A good source on this topics is [7]. We denote by {M,}  the set of operators
T € L(B) such that M,T =TM,, i.e., the commutant of M.

The commutant of Toeplitz operator on certain Hilbert spaces of functions
was studied in several papers. See, for example, [1-4, 8]. Also the commutant
of multiplication operators on Banach spaces of functions were investigated for
certain multiplication operators. See for instance [5-7, 9-11]. In section 2 of
this article we investigate the commutant of the operator M,, when ¢ is an
analytic polynomial or a rational function. By the Implicit Function Theorem
under certain condition on ¢ and G, we characterize the commutant of M.
In fact, when p is a polynomial of degree one it is an univalent function and it
is well known that {M,} = {Mg : ¥ € M(B)}. Hence we consider certain
polynomials with degree n > 2. We conclude the introduction with a theorem
that will be used in the proof of Proposition 2.2.

Theorem 1.1. Let B be a Banach space of analytic functions and let ¢ €
M(B)N A(G). If for some A € G, ¢ — &(X) has only a simple zero in G, then
T(F)(N) = TN F(N) for each f € B and every T € {M,} .

Proof. See [6, Theorem 2.1]. O

2. The main results
In [4] Z. Cuckovié¢ and Dashan Fan have shown that if G = {z € C: 7 <
|z| < 1}, B = L%(G) and p(z) = 2z + a22% + -+ + a,2™, where a; > 0 and
p(z) — p(1) has n distinct zeros, then {M,} = {My : ¥ € M(B)}. In this
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section we extend the result obtained in [4] to various domains G, to Banach
spaces of analytic functions and to certain polynomial or rational symbols. The
proof of the next theorem is similar to a part of the proof of Theorem 4 in [4].

Theorem 2.1. Suppose that G is an open set in C. Let r(z) = p(z)/q(z) be
a rational function with poles off G, let n = max{deg(p),deg(q)} > 2 and let
A€ G. Ifr(z) —r(\) has n — 1 distinct zeros outside of G, then there is an
open set U C G such that for every w € U the function r(z) — r(w) has only a
simple zero in G.

Proof. Let A be the set of zeros of ¢ and let & = C — A. Assume that
21,22,...,2n—1 are distinct zeros of r(z) — r()\) outside G. We now choose
open subsets Q;,Q, ..., Q,_1 of Q such that z; € ; and Q; NG = 0 for every
i=12,...,n—1,and Q; N Q; = 0 for ¢ # j. Assume thatF : A x Q = C
defined by F(z,w) = r(z) — r(w). Then F()\ w) has n — 1 zeros outside G.
Since by the hypothesis the zeros of F(A, w) are simple, we have

OF ) )

%(A,zi) =(r(A) —r(w)) (z:)) 0 for i=1,2,...,n—L
Thus by the Implicit Function Theorem, for each 4, there exists an open neigh-
borhood V; and a continuous map ; : V; — C such that A € V;, ¢;(A) = 2
and F'(z,¢;(z)) =0 for every 2 € V; and i = 1,2,...,n — 1. Since ; is contin-
uous, there exists an open subset U; of V; such that A € U; and ¢;(U;) C ;.
Let Up = N?7'U;. Then U = Up N G is a nonempty open subset of G. Sup-
pose that w € U. Then w € U; for every 4 and so, (w, 1 {(w)), (w,¢2(w)),...,
(w, pn—_1(w)) are zeros of F. Hence ¢1(w),p2(w),...,on-1(w) are n — 1 dis-
tinct roots of the equation r(z) — r(w) = 0, which are outside of G. O

Proposition 2.2. Let B be a Banach space of analytic functions on G. If r(2)
satisfies the conditions of Theorem 2.1, then

(M} ={Mg: ¥e M(B)}.

Proof. By Theorem 2.1, there is an open set U C G such that for every w €
U the function r(z) — 7(w) has only a simple zero in G. Assume that T €
{M,} . By Theorem 1.1, for every w € U and each f € B, we have T'(f)(w) =
T(1)(w)f(w). Since two analytic function T'(f) and T(1)f are equal on U
and G is connected, we have T'(f) = T(1)f for all f € B, and the proof is
complete. W]

Example 2.3. Let B be a Banach space of analytic functions on D, where D
is the unit disk and let r(z) = 2™ /(2 — z) for some positive integer n > 2. It is
easy to see that |r(1)] =1 and |r(z)| < 1 for z € D — {1}. Using Theorem 2.1,
with A = 1 and Proposition 2.2, we have

{M.} ={My: ¥eMB}
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In the reminder of this article we assume that G C D and ¢(z) is a polyno-
mial.

Theorem 2.4. Let B be a Banach space of analytic functions on G. Letn > 2
be an integer, a # 0 and b be two complex numbers, and let p(z) = 2™ +az +b.
Then

) If0 € G and |a| > 1, then {M,} ={My: Ve M(B)}.

b) If a = |ale®® belongs to D and e*~1 € G, then (M)} = {My: "¢
M(B)}-

Proof. a) If in Theorem 2.1 we set A = 0, then it is easy to see that p(z)—p()\) =
2™ + az has n — 1 distinct zeros outside of D. Hence by Proposition 2.2, we
have {M,} = {My: ¥ € M(B)}.

b) Set A = enz_fl, we can see that p(A) = p(z) if and only if A" +aX = 2" +az.
But

| A" +aX [=[ A X" tal= e+ [a|e’ =1+ a].

Soif |z| < 1, then | 2™ +az |< |z™| +|a||z] < 1+ |a| =| A" +aX |, which implies
that z isn’t a zero of p(z) —p(A). In the next step assume that 2z € D is a root
of equation p(z) — p(A) = 0. Therefore, | 20" ! +a |=| 20" +azy |=| A" +a) |=
I+ |a|=| 2™ | +|a| Thus arg "' = arga + 2kr for some integer k.
Since | zp |= 1, we have 2"~ = A"~L. It follows that (20 — A)(a + A"~ 1) =0,
which implies that 25 = A. To complete the proof of the theorem, it suffices to
show that n —1 zeros of p(z) —p(A) outside of D are distinct. Since the absolute

value of each zero of p (2) is | 2 |"_1——1 which is less than one, we conclude that

the zeros of p(z) — p(\) outside of D are distinct. Hence by Proposition 2.2,
the proof is complete. O

Theorem 2.5. Let B be a Banach spaces of analytic functions on G. Letn > 2
be an integer, a # 0 and b be two complex numbers, and let p(z) = 2" +az""' +b.
Also assume that a = |ale’® and ¢ € G. If (n —1)""']a™| # n"(1 + |a|),
then
(M} = (Mg T MEB)).
Proof. Set A = % we can see that p(\) = p(z) if and only if A™ + aA"~! =
Z"+ a2zl But
I)\n+a)\n—1 |=|ein00+lalein00 |:1+|a|.

Soif|z[< 1,then | 2" +az""! |<|2" |+ |al|| 2"t |< 1+ |al=| A" +ar™ |,
which implies that z isn’t a zero of p(z) — p()). Now assume that 2y € 8D is
a root of equation p(z) — p(A\) = 0. Therefore, | zo + a |=| 2™ + azf ™! |
=| A" +aA\" ' |= 14+ | a |=| 2 | + | @ |. Thus Arg zy = Arg(a). Since
| zo |= 1, we have 29 = . To complete the proof of the theorem we need only
to show that n — 1 zeros of p(z) — p()\) outside of D are distinct. Since the
only nonzero root of the equation p'(z) = 0 is ﬂ;l—_ll, it suffices to show that
ﬂZ—_Q is not a root of equation p(z)—p(A) = 0. But p(ﬂZ—_Q) = p(\) implies
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no1 . . _qyn—1
that (—1)"‘1a"(nn;n111— = n(e'™? 4 |ale®) and so |a]"% =n(1+|a|).

But by assumption this relation is not true. Therefore, we conclude that n — 1

zeros of p(z) — p(X) outside D are distinct and by Proposition 2.2, the proof is
complete. a

Theorem 2.6. Let B be a Banach spaces of analytic functions on G and let
P=ao+a1z+az> +---+anz" be a polynomial of degree n > 2 such that
ay # 0. If there is zg € 0D NG such that all nonzero terms a;zo* for i > 1
are positive or all are negative also p(z) — p(z9) has n distinct zeros, then

{M,} ={Mg: ¥ M(B)}.

Proof. By assumption p(zp) — ao is real and | p(z9) — a0 |=| @120 | + | aszo? |
+--+ | anz™ |. Hence p(z) — p(z9) = 0 implies that

la1z+ a2+ +an2" |=ay | +|as |+ + | an|.

For z € D, we have
a1z +ap2® + - +an2™ |<|ay |+ |az |+ + | an |-

So p(z) — p(zo) has no zero in D. On the other hand if z € 8D is a zero of
p(z) — p(z0), then

lai | +]az|+--+]|an| = |alz]+]a2z2|+~'+|anz"|
= |aiz4+a2’ + - +ap2"|.

Hence Arg(ai12 4+ az2® + - -+ + a,2™) = Arg (a12). Since p(z) = p(20), we have
p(2) — ap = p(z0) — ap. Thus p(2z) — ap is a real number and also Arg(a;z +
a22®+---+a,2") = Arg(a120). Hence Arg(a;z) = Arg(a; 20) and since | z |= 1,
we have z = zy. Therefore, p(z) — p(20) has n — 1 distinct zeros outside D and
by Proposition 2.2, the proof is complete. ' O

An easy application of the above theorem is when p is a polynomial of degree
3 such that its coefficients satisfy the conditions of Theorem 2.6. Let a and b
be zeros of p (). If p(a) and p(b) are not equal to p(zp), then {M,} = {My :
¥ e M(B)}.

Using the same argument as used in the proof of Theorem 2.6, we have the
following two propositions.

Proposition 2.7. Let B be a Banach spaces of analytic functions on G. Let
P=ag+arz+asz?+ -+ a,2" be a polynomial of degree n > 2 such that
a1 # 0 and Arga; = Oy for a; # 0 with i > 1. If p(z) — p(1) has n distinct
zeros and 1 € 8G, then {M,} = {My: ¥ e M(B)}.

Proposition 2.8. Let B be a Banach spaces of analytic functions on G and
let p=ag+a12+a22> + - +a,2" be a polynomial of degree n > 2 such that
ar # 0. Also assume that for each a; # 0 with i > 1, Arga; = 0, for i odd and
Arga; = 0o + 7 or Arga; = 6y — 7 for i even . If p(z) — p(—1) has n distinct
zeros and —1 € 0G, then {M,} = {My: ¥ e M(B)}.
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Theorem 2.9. Let B be a Banach spaces of analytic functions on G, and let
P = ap+ a1z + azz? + -+ + anz™ be a polynomial of degree n > 2. If the
mazimum velue of | p(z) | on D is obtained at a unique point zo € OG and
lal |+2|az |43 |as|+---+(n—1)|an—1 |<n|an| or none of the zeros of
p (2) is a root of equation p(z) —p(zo) = 0, then {M,} = {Mg: ¥ e M(B)}.

Proof. By assumption |p(z)| < |p(z0)]| for all z € D — {20}. Hence p(z) — p(20)
has no zero in G — {zo}. If none of the zeros of p (z z) is a root of equation

p(2)—p(z0) = 0, then n—1 zeros of p(z) —p(2o) outside D, and therefore outside
G are distinct. Thus by Proposition 2.2, the proof is complete. Otherwise by
assumption |a;| + 2|az| + 3las| + - - + (0 — 1)|an_1| < n|an|- Hence |p (z) —
na,z" 1| <|na,z""! | for all z € 8D and therefore by the Rouche’s Theorem
p (2) has n — 1 zeros inside D, which implies that n — 1 zeros of p(2) — p(z0)
outside D are distinct. Now by Proposition 2.2, the proof is complete. ]

Corollary 2.10. Let B be a Banach spaces of analytic functions on G, let
p(z) = anz™ + an_12""1 4+ .-+ + ap be a polynomial of degree n > 2 with
nonnegative real coefficients and let 1 € 8G. If there is a posztwe integer
m < n such that a,, and a,,_1 are not equal to zero and

lay | +2]az | +3|as |+ +(n—1)|an-1|<n]an|,
then {M,} ={Mg: ¥ e M(B)}.

Proof. It is easy to see that [p(1)| > |p(z)| for all z € D —{1}. Indeed, if z = €*
for some 6, —7 < 8 < 7 and | p(2) |=| p(1) |, we have

- o
| ame*™ + Q1 €1 |= am + Gm—1.

Therefore, mf = (m — 1)8 + 2kx for some integer k. Hence z = 1, and by
Theorem 2.9, the proof is complete. O

In the next example we present three applications of some of the above
theorems.

Example 2.11. Let B be a Banach spaces of analytic functions on G.

a) Let p(z) = —2% + 622 — 92+ 5, and let zyp = —1 belongs to G. Since
p (z) = =322 + 122 — 9 has zeros 1 and 3, which aren’t the roots of equation
p(z) — p(—1) = 0 by Theorem 2.6, or Proposition 2.8, we have {M,} = {My :

¥ e M(B)}.

b) Let p(z) = 327 4+ 225 + 422 + 5 and let 2o = 1 belongs to G. Then by
Theorem 2.9, we have {M,} = {My: ¥ M(B)}.

¢) Let p(2) = i2® + 3iz2 + 3iz — 3 and 1 € G. Since p (z) = 3i2% + 6iz + 3i
has a zero of order 2 at z = —1 and —1 isn’t a root of equation p(z) —p(1) =0,
we conclude that the roots of this equation are distinct. Hence by Proposition

2.7, we have {M,} = {My: ¥ M(B)}.
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