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THE QUASI-HADAMARD PRODUCTS OF CERTAIN
p-VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS

MoOHAMED KAMAL AOUF

ABSTRACT. The object of the present paper is to show quasi-Hadamard
products of certain p-valent functions with negative coefficients in the
open unit disc. Our results are the generalizations of the corresponding
results due to Yaguchi et al. [10], Aouf and Darwish [3], Lee et al. [5]
and Sekine and Owa [9].

1. Introduction

Let A,(n) be the class of functions of the form :

(1.1) F(z)=2" = ) az* (ar20p,neN={1,2..1)
k=p+n
which are analytic and p-valent in the unit disc U = {2z : |2| < 1}. A function
f(z) € Ay(n) is said to be a member of the class P;(n,a, B) if it satisfies
(12) b4 -y (zeU)
1.2 —7—53:——-————-' <:,B z € U
L& 4 p—2a

zp—1

for some a(0 < o < p) and B(0 < 8 < 1). The class P} (n,a,3) was studied by
Aouf [1, 2].
We note that :
(i) For 8 = 1, the class Py(n,a,1) = Pr(n,a) = {f(2) € Ap(n) :

zp—1

[10] and Owa and Aouf [7);
(ii) For 8 = n = 1, the class Py(l,a,1) = Pr(a) = {f(2) € 4, :

Re{%ﬁ%} > a(z € U),0 < a < p} was studied by Lee et al. [5],
Aouf and Darwish [4] and Aouf [3];

Re{uﬁl} > az € U),0 < a < p} was studied by Yaguchi et al.
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(ili) For 8 = p = 1, the class P}(n,a,1) = Cla,n) = {f(2) € Ai(n) :
Re{f'(z)} > a(z € U),0 < a < 1} was studied by Sekine and Owa
[9); B
(iv) For 8 = p = n = 1, the class Pf(1,a,1) = C(a,1) was studied by
Sarangi and Urelagaddi [8] and Owa [6].
For functions f;(z) € Ap(n) defined by

(1.3) fi(z)=22— Y ar;2® (ar; 205 € N),
k=p+n

we denote by (f1 * f2)(2) the quasi-Hadamard product of functions fi(z) and
f2(2), that is,

(1.4) (fi * f2)(z) = 2P — Z ak,lak,22k .

k=p+n
For 3 =1 Yaguchi et al. [10] proved the following results :

Theorem A. If f;j(2) € Py(n,a;,1) = Py(n,a;)(j = 1,2), then (fixf2)(2) €
P3(n,7), where

I2I (p— ;)
Jj=1 )

1.5 —p—
(1.5) y=p P

The result is sharp.

Theorem B. If f;i(2) € Py(n,a;)(j =1,2), then the function

(16) hz)=2" = 3 (ais+ai,)e"
k=p+n
is in the class P, (n,7), where
2(p — ap)? .
(1.7 y=p- Hp— o) (o = min{an, az}) .

p+n
The result is sharp.
For # =n =1, Lee et al. {5] have shown that :

Theorem C. If f;(z) € P;(1,0,1) = P¥(a) (j = 1,2), then (f1 * f2)(2) €
Py (), where

_ . (p-o)?
(1.8) (il s

The result is sharp.
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Also for # = n =1, Aouf and Darwish [3] have proved the following results:
Theorem D. If f;(z) € Py(a;)(j = 1,2), then (fi * f2)(2) € P; (), where

- ay)
=1

1.9 =p-——.
(1.9) TEP p+1

The result is sharp.

Theorem E. If f;(z) € P;(a)(j = 1,2,3), then (f1 * fo * f3)(2) € P;(7),
where

_ . _-0a)
(1.10) vy=p- GT1E

The result is sharp.

Theorem F. If f;(z) € P;(a)(j = 1,2), then the function

o<
(1.11) h(z) =20 = Y (a}, +aj,)z"
k=p+1
is in the class Py (), where
2(p - )?
(1.12) Y=pP- —p+_1
The result is sharp.
Further for 8 = p = 1, Sekine and Owa [9] proved the following results :

Theorem G. If fi(z) € Pf(n,a,1) = C~'(a,n)(j = 1,2), then (f1 * f2)(2) €
C(n,7), where

(1-a)?

(1.13) v=l-—

The result is sharp.

Theorem H. If f;(z) € 5(04,71)(]’ =1,2), then the function

(1.14) g == Y (@ a2yt
k=n+1
is in the class C (v,n), where
2(1 — a)?

(1.15) y=1

The result is sharp.
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In the present paper, we prove some interesting generalizations of the the-
orems given by Yaguchi et al. [10], Aouf and Darwish [3], Lee et al. [5] and
Sekine and Owa [9].

2. Quasi-Hadamard products

To prove our main results of quasi-Hadamard products, we need the following
lemma given by Aouf ([1] and [2]).

Lemma 1. A function f(z2) € An(p) is in the class Py(n,cq, B) if and only if

x

(2.1) > (L+Bkar <28(p—a) .

k=p+n

Applying the above lemma, we derive :

Theorem 1. If fi(z) € P;(n,a;,08)(j = 1,2,...,m), then (fi * fo *--- %
fm)(2) € Py (n,v, ), where

i 260 - )

28+ B +n)m
The result is sharp for the functions

(2.2) Y=p

o 2P —0) e
(2.3) fi(z) ==z (1+[3)(p+n)z+ i=12...,m).

Proof. For m = 1, we see that v = ;. For m = 2, Lemma 1 gives

SRLET
(2.4) k;ﬂ Qﬂ(p_aj)ak,] <1 (j=1,2).

This gives that

(2.5 y L ammer
k=p+n ll:[12ﬂ(p—aj)

To prove the case when m = 2, we have to find the largest v such that

= (1+B8)k
(2.6) k;p;n B agaar2 <1,

or such that

(2.7) VALSLTE I L (k>p+n).

28(p - ) 2
,I;Il 26(p - o)
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Further, by using (2.5), we need to find the largest v such that
1 < 1+ 5k

(2.8) < (k>p+n).
28(p — 2
Blp—) H1 28(p— ;)
j=
It follows from (2.8) that
12[ 28(p — o)
(2.9) y<p-= (k>p+n).

26(1 + Bk
Defining the function (k) by

lf[ 28(p — o)
(2.10) k) =p— lm )

we see that ¢ (k) > 0 for k > p + n. This implies that

li 26(p - a;)

280+ B)(p+n)
Therefore, the result is true for m = 2.

Suppose that the result is true for any positive integer m. Then we have
(foxfax % fr* frmy1)(2) € Pr(n, A, B), where

_ . 28(p—7)2B(p — amy1)
(2.12) AP T A

where v is given by (2.2). After a simple calculation, we have

(2.11) T<¢p+n)=p

m+1

l;Il 28(p — aj)
S 28[A+ B+ )

Thus, the result is true for m + 1. Therefore, by using the mathematical

induction, we conclude that the result is true for any positive integer m.
Finally, taking the functions f;(z) defined by (2.3), we have

(2.14)

Kook = 2P _ 1 __Q,B(p—aj_)_ n o P _ p+n
Jixh fm)z) = {jl;[l(1+6)(p+n)}zp+ = A

(2.13) A=p

which shows that

> o]~

k=p+n
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1 2
2ﬂ P—) o ﬂ )P+ n)
Consequently, the result is sharp. O
Putting a; = o (j = 1,2,...,m) in Theorem 1, we have :

Corollary 1. If fi(2) € Pj(n,a,8)(j =1,2,...,m), then (fi*fox-- *fm)(2) €
P3(n,v,B), where

_ 28(p — o)]™
(2.16) V=P Bt Bt )

The result is sharp for the functions

28(p - o)

(2.17) fi(z) =2% - Txhtn)”

2Pt (5=1,2,...,m).
Putting 8 = 1 in Theorem 1, we have :

Corollary 2. If f;(z) € Pi(n,a;,1) = Pi(n,a;)(j = 1,2,...,m), then (fi *
f2 koemo ok fm)(Z) € P;(’I’L,"}’), where

Hl(p ;)
2.18 =p- =
(2.18) Lt P v
The result is sharp for the functions
(2.19) Fi(z) = 2 — ’ﬁzﬁ" (G=1,2,...,m).

Putting n = 1 in Corollary 1, we have :

Corollary 3. If fi(2) € Py(1,a,8) = Py (o, )(j = 1,2,...,m), then (fi* fox*
Ck fm)(z) € P;(’Yaﬂ); where

_ [28(p — a)]™
(2:20) V=P B Bt DI

The result is sharp for the functions

(2.21) filz) =27 — (13?(;)*(;?1)#“ (Gj=1,2,...,m).

Putting # =n = 1 in Corollary 1, we have :
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Corollary 4. If fi(2) € P;(1,a,1) = P} (a)(j = 1,2,...,m), then (fi * fa
x fu)(2) € By(3), whert

(p—a)™

2.22 =p- -

(2.22) V=P e

The result is sharp for the functions

(2.23) filz) = 2P — i—:L—%zPH (G=1,2,...,m).

Putting 5 = p =1 in Corollary 1, we have :

Corollary 5. If fi(z) € Pf(n,a,1) = C(n,a)(j = 1,2,...,m), then (f1 * fa *

- x fm)(2) € C(n, ), where
R € e
(2.24) T=1- gy

The result is sharp for the functions

(2.25) Filz) =2 - LLZZH" (G=1,2,...,m).
Remark 1. (i) Corollary 4 (when 8 = n = 1) is the generalization of
Theorem E given by Aouf and Darwish [3];
(ii) Corollary 2 is the generalization of Theorem A given by Yaguchi et al.
[10]. Also Corollary 2 (when n = 1) is the generalization of Theorem
D given by Aouf and Darwish [3];
(iii) Corollary 4 is the generalization of Theorem C given by Lee et al. [5];
(iv) Corollary 5 is the generalization of Theorem G given by Sekine and
Owa [9].

Theorem 2. If f;(z) € Py(n,a;,8)(j =1,2,...,m) and

(2.26) h(z) = 27 — Z (Z ai,j)zk ,

k=p+n j=1

then h(z) € Py(n,7,B), where

_ m[28(p — o))’ .
(2.27) y=p-— 2B+ A+ 1) (ap = min{ag, 2,...,am}) -

The result is sharp for the functions f;(z) given by (2.3).

Proof. Since Lemma 1 gives

2
o] 2 o0
e 3 (k) { 3 <76>k)} o

Ml b 28(p =y
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for j =1,2,...,m, we have

—~ 1 [ (1+Bk
(2.29) > o= { } Zak ;

keptn 28(p — ;) =
Note that we have to find the largest v such that
= (1+PB)k o

(2.30) > {—— O ai)<1.

poia (280 =7 o
This implies that

m[28(p — a)]?

2.31 <p-— PP Tk >p+n),
(2.31) <SP Tk (k>p+n)
that is, that

_ 2

< D— ’
=PI+ B+
which completes the proof of Theorem 2.
Putting a; = « (j = 1,2,...,m) in Theorem 2, we have :

Corollary 6. If f;(z) € P;(n,a,ﬂ)(j = 1,2,...,m) and h(z) is defined by
(2.26), then h(z) € Py (n,~,B), where
m[28(p — o)}
2.33 =p- .
(233 TP B A+ )
The result is sharp for the functions f;(z) defined by (2.17).

Putting 8 = 1 in Theorem 2, we have :

Corollary 7. If fi(z) € Py(n,0;)(j = 1,2,...,m) and h(z) is defined by
(2.26), then h(z) € Py(n,v), where

m(p — 00)2 .
2.34 =p- —— = ce e, t) .
( ) Y D p+n (aO mln{al,a27 y & })

The result is sharp for the functions f;(z) defined by (2.19).

Putting 8 = 1 in Corollary 6, we have :
Corollary 8. If f;(z) € Py(n,a)(j = 1,2,...,m) and h(z) is defined by (2.26),
then h(z) € Py(n,v), where

m(p — )’
2.35 =p—
(2.35) y=p o
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The result is sharp for the functions f;(z) defined by

(2.36) fj(z):zP—Z:L:zH" (G=1,2,...,m).

Putting n = 1 in Corollary 6, we have :

Corollary 9. If f;(z) € Py(a,8)(j = 1,2,...,m) and h(z) is defined by (2.26)
with n =1, then h(z) € By (v, ), where

_ m[28(p — a)?
(2.37) T B AT

The result is sharp for the functions f;(z) defined by (2.21).

Putting 8 = n =1 in Corollary 6, we have :

Corollary 10. If f;(2) € Py(a)(j =1,2,...,m) and h(z) is defined by (2.26)
with n =1, then h(z) € P;(y), where

m(p — a)?
2.38 =p- ——" .
(2.38) V=P T
The result is sharp for the functions f;(z) defined by (2.23).

Putting # = p = 1 in Corollary 6, we have :
Corollary 11. If fi(2) € C(n,e)(j = 1,2,...,m) and h(z) is defined by (2.26)
with p =1, then h(z) € C(n,), where
m(l — a)?
14+n
The result is sharp for the functions f;(z) defined by (2.25).

(2.39) y=1-

Remark 2. (i) Corollary 7 is the generalization of Theorem B given by
Yaguchi et al. [10];
(ii) Corollary 10 is the generalization of Theorem F given by Aouf and
Darwish [3];
(iii) Corollary 11 is the generalization of Theorem H given by Sekine and
Owa [9].
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