DOI QR코드

DOI QR Code

AN EQUIVALENCE FORM OF THE BRUNN-MINKOWSKI INEQUALITY FOR VOLUME DIFFERENCES

  • Zhao, Chang-Jian (DEPARTMENT OF INFORMATION AND MATHEMATICS SCIENCES COLLEGE OF SCIENCE CHINA JILIANG UNIVERSITY) ;
  • Cheung, Wing-Sum (DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF HONG KONG)
  • Published : 2007.11.30

Abstract

In this paper, we establish an equivalence form of the Brunn-Minkowski inequality for volume differences. As an application, we obtain a general and strengthened form of the dual $Kneser-S\ddot{u}ss$ inequality.

Keywords

References

  1. E. F. Beckenbach and R. Bellman, Inequalities, Second revised printing. Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Band 30 Springer-Verlag, New York, Inc. 1965
  2. W. J. Firey, p-means of convex bodies, Math. Scand. 10 (1962), 17-24 https://doi.org/10.7146/math.scand.a-10510
  3. R. J. Gardner, Geometric Tomography, Cambridge Univ. Press, New York, 1995
  4. D. M. Goikhman, The differentiability of volume in Blaschke lattices, Siberian Math. J. 15 (1974), 997-999 https://doi.org/10.1007/BF00966567
  5. G. S. Leng, The Brunn-Minkowski inequality for volume differences, Adv. in Appl. Math. 32 (2004), no. 3, 615-624 https://doi.org/10.1016/S0196-8858(03)00095-2
  6. E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131-150 https://doi.org/10.4310/jdg/1214454097
  7. E. Lutwak, The Brunn-Minkowski-Firey theory. II. Affne and geominimal surface areas, Adv. Math. 118 (1996), no. 2, 244-294 https://doi.org/10.1006/aima.1996.0022
  8. E. Lutwak, Inequalities for mixed projection bodies, Trans. Amer. Math. Soc. 339 (1993), no. 2, 901-916 https://doi.org/10.2307/2154305
  9. R. Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathemat- ics and its Applications, 44. Cambridge University Press, Cambridge, 1993
  10. C.-J. Zhao and G. S. Leng, Inequalities for dual quermassintegrals of mixed intersection bodies, Proc. Indian Acad. Sci. Math. Sci. 115 (2005), no. 1, 79-91
  11. C.-J. Zhao and G. S. Leng, Brunn-Minkowski inequality for mixed intersection bodies, J. Math. Anal. Appl. 301 (2005), no. 1, 115-123 https://doi.org/10.1016/j.jmaa.2004.07.013

Cited by

  1. On volume quotient functions vol.24, pp.1, 2013, https://doi.org/10.1016/j.indag.2012.06.006