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ON THE GEOMETRY OF BIHYPERELLIPTIC CURVES

EDOARDO BALLICO, GIANFRANCO CASNATI, AND CLAUDIO FONTANARI

ABSTRACT. Here we consider bihyperelliptic curves, i.e., double covers of
hyperelliptic curves. By applying the theory of quadruple covers, among
other things we prove that the bihyperelliptic locus in the moduli space
of smooth curves is irreducible and unirational for g >4y +22>10.

0. Introduction and notation

Let C be the complex field and let M 4 be the coarse moduli space of smooth
projective curves of genus g over C. The aim of this paper is to deal with the
bihyperelliptic locus By C My i.e., the locus of curves which are double covers
of hyperelliptic curves of genus ~.

When v = 0, 1 such loci reduce to the well known hyperelliptic and bielliptic
loci respectively, which are irreducible and unirational of respective dimensions
29 — 1 and 2g — 2 (they are actually rational for ¥ = 0 and for vy = 1 and
g =3,4,5: see [3], [14] and the references cited there).

The case v > 2 seems to be still widely open despite its interest in some dif-
ferent contexts. Indeed, B are among the components of the singular locus of
M, when 7 =0,1,2 (see [6]). In [11] the authors describe the locus inside M,
corresponding to bihyperelliptic curves with more bihyperelliptic structures,
proving it has many connected components. Moreover, bihyperelliptic curves
arise naturally in the setup of Prym and Jacobian varieties (see [10], Section 3).
Finally, even more general double covers have been recently addressed in [7]
from the point of view of the slope of fibrations.

The main result of the present paper is the following

Theorem. For g > 4y 42 > 10 the loci B} are irreducible and unirational of
dimension g — v+ 2[(g — ) /2] + 1.

In order to prove the above statement we observe that bihyperelliptic curves
are particular tetragonal curves, so that we can apply the theory of quadruple
covers (see [4]). Therefore we are able to associate to each bihyperelliptic curve
two locally free sheaves on ]P’}C and a section of a particular tensor product
of them. We are thus in the position to compute the splitting type of such
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sheaves and to identify exactly the sections defining bihyperelliptic curves (see
Proposition 2.5 and Remark 2.6). Via such a description we are also able to
define a stratification of By, whose strata are quotients of suitable projective
spaces with respect to the action of some explicit matrix groups, in particular
we show that each stratum is irreducible and unirational (see Proposition 3.4).

The question about the rationality of B is rather intriguing, but it seems
to be quite hard, as well as the case of double coverings of arbitrary smooth
curves of genus v > 3. We leave both these points as open problems worth of

further investigation.

Notation

As usual we denote by Ox and wx the structure sheaf and the canonical
sheaf of the irreducible, smooth, projective variety X. As customary, we denote
by M, the moduli space of smooth curves of genus g.

If ¥ is a locally free Ox—sheaf and s € H°(X,F) we denote by Dy(s) the
subscheme of X locally defined by the vanishing of s, i.e., set-theoretically
Dy(s) := {z € X| s(z) = 0}. If £ is any Ox—sheaf then we denote its dual
Homo, (€,0x) by €.

If g is an element of a certain group G then (g) denotes the subgroup of G
generated by g.

In the sequel, we will also introduce the shorthands aumin := [(g — 2y +1)/2]
and amax := [(g — v + 2)/2).

For other notations and definitions we always refer to [12].

1. Generalities about tetragonal curves

We begin by summarizing some results about covers of P¢. Recall that if C
is a smooth curve, then a morphism g: C — PL is a cover of degree 4 if it is
quasi-finite of degree 4. We refer to [4] for results about covers of degree 4.

Let o: C — P¢ be a cover of degree 4. There exists a natural exact sequence

# -
0= Opr % 0.0c - € >0,

where £ is a locally free Op1-sheaf of rank 3 called the Tschirhausen module of
0. The sequence above splits (see [4]) and we obtain a decomposition g,O¢ =
(’)pé @ &. In particular, for each n € Z,

(1.2) h(C, 0" Opi(n)) = b (PE, Opy(n)) + hi (P&, E(n)).

Moreover the relative dualizing sheaf wepy = we ® ¢"Opy(2) is defined and
invertible. By relative duality OxwopL = (040c)” = Op1 @ £ (see [12), exercise
111 6.10 b)).

Theorem 1.3. Let C be a smooth, integral curve and o: C — PL a cover of
degree 4.



GEOMETRY OF BIHYPERELLIPTIC CURVES 1341

There exists an embedding i: C — P := P(E) (£ is the Tschirnhausen module
of ) such that wopy =" 0p(1) and p = wod, m: P — PL being the natural
projection.

There ezists a locally free Opi—sheaf F of rank 2 such that det F = det £,
and fitting into an exact sequence of the form
(1.3.1) 0 — 7* det £(—4) = 1" F(~2) == Op — O¢ — 0.

Sequence (1.3.1) is unique up to isomorphism.

The restriction to Py := 7w~} (y) = P% of sequence (1.3.1) is a minimal free

resolution of the structure sheaf of Cy := 07 '(y). In particular C, C P, is

the complete intersection of two conics, hence Cy is not contained in any line
rePp,.

Proof. See [4], Theorem 2.1. O
Twisting sequence (1.3.1) by Op(2) and applying 7, we obtain

(1.4) 0 F 58 = owiyp — 0.
Since every locally free Op1—sheaf splits into a direct sum of invertible sheaves

we can introduce the following

Definition 1.5. Let g: C — ]P’(lC be a cover of degree 4, and fix decompositions
&= @?:1 OP}:(ai)a o <o <ag, F @?;1 Opé(ﬂj), B < Ba.

The sequence (a1, az,as, 31, 8s) is called the scrollar sequence of the cover
0-

We have three monomorphisms Opi(@i) — & into the three summands,
hence three fibrewise independent sections u € H°(P, Op(1) ® 7*Op1(—an)) =
H°(PL,E(—an)), v € H°(P, 0p(1) ®7r*(9pé(—-a2)) = HO(PL,E(—a2)), w €
H°(P,0p(1) ® W*O]pql:(—ag)) = HO(PL,E(—a3)). We set U := Do(u), V :=
Dy(v), W := Do(w). §

Notice that & € Homp, (n*F(-2),0p) = H°(P,Op(2) ® 7*F). Via the
isomorphism

H° (IF’, O]p(2) ® 7T*.7:-) ~ HO0 (]P, O]p(2) ® ﬂ-*OIp(l:(_ﬂl))
® H(P, 0p(2) ® 7" Opy(—2),
we can identify J with a pair {a,b) where
alu,v,w) = agal_gluz + 200, +as—B UV + 200, 4 ay— g, UW+

(1.6) + a2°‘2—ﬁ1v2 + 20az+05—p, VW + a2a3—51w27
b(u, v, w) = b2a1—ﬁ2u2 + 2bory 4z 3, UV + 2Dy g - g YW

+ b2a2 —,321)2 + 2baz+a3—62vw + b2a3‘ﬁ2w2a

an, by € H*(Pt, Op1(h)). In particular C = AN B where A := Do(a), B :=
Dy (b). i
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Here we list some helpful remarks that will be used in the following sections.

Remark 1.7. a) Let p: C — P{ be a cover of degree 4 having (a1,a, a3,
B1,B2) as scrollar sequence. Then a; + as + ag = 81 + B2 = g+ 3.

b) If C is smooth and irreducible then a; > 1 (see [13], Proposition 1.2)
and 81 < 2a;y, otherwise VN W C C in contradiction with the irre-
ducibility of C. Conversely if a3 > 1, then C is connected (formula
(1.2) with ¢ = n = 0), hence, if C is smooth, then it is also irreducible.

¢) Finally, since C is complete intersection locally over PL of relative con-
ics, then its ideal is generated locally over P by any two relative conics
containing C without common components. Since 8; < > one can take
any two relative conics linearly equivalent to A.

Conversely we point out the following fact.

Theorem 1.8. Let £, F be as above. we denote by Pray,a0,a3,81,8:) the projec-
tive space associated to H°(P,Op(2) ® m*F). The subsets

u(al,ozzya:;,ﬁl,ﬁz)
= {(a,0) € P, a0,04,8:,82) | Dola,d) is a smooth and connected}

are open inside ]P(al,az,ag,ﬁl,,az)-

Proof. See [4], Theorem 4.5 and [2], Theorem 2.5. a

2. Bihyperelliptic curves

In the following C will always denote a fixed curve of genus g endowed with
an ic € Aut(C) of order two such that T := C/(i¢) is a smooth projective
curve of genus v > 0. The automorphism i is said to be an involution of
genus .

Definition 2.1. With the above notations we say that C is bihyperelliptic if
I' is hyperelliptic. The locus inside M ¢ of points representing bihyperelliptic
curves which are double covers of a curve of genus v will be denoted by Bj.

Clearly each bihyperelliptic curve is trivially tetragonal. The composition
of the natural morphism #: C — I' := C/{ic) with any morphism ¢: T' :=
C/{ic) — P¢ of degree 2, is a cover g: C' — P{ of degree 4.

Lemma 2.2. Let C € M, be a tetragonal curve and let ic € Aut(C) be an
involution of genus y. If g > 2y +4 then each g} on C is composed with ic and
CeB). Ify>2thenC ¢ B;. If ¢ > 4y + 2 then ic is the unique involution
of genus at most v in Aut(C).

Proof. Each cover g: C — Pg. of degree 4 factorizes through C — I' := C/{i¢)
by the Castelnuovo-Severi inequality (see [1], Theorem 3.5). The same in-
equality also guarantees that By N B; =@ if v > 2. If C carries also another
involution of genus 7' < +y then, again by Castelnuovo-Severi, g < 4y+1. O
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Clearly Bg is the hyperelliptic locus, so we will assume v > 1 from now on.
Notice that B} is the bielliptic locus which has been already studied from the
scrollar sequence viewpoint (see Section 3 of [8]: see also [9] and [3]).

Again by Castelnuovo-Severi each curve C' € M,, g > 10, carries at most
one g; unless C € B.. Thus if C € By for g > 4y + 2 > 10 the following
definition makes sense.

Definition 2.3. Let C € B]. If g > 4y + 2 > 10, the scrollar sequence of C is
the scrollar sequence of the uniquely associated cover g: C — PL of degree 4.

From now on we will always assume that C € B} with g > 2y +4 > 6 and
we will denote by ¢: C — T the morphism of degree 2 induced by ic, the
involution of genus . Thus ¥.O0¢ = Or & L7! for some £ € Pic(T) such that
H(T, £?) has a section with reduced zero-locus on I'. For each morphism
@: T — P¢ of degree 2 we have 0,Or = Op1 ® Op1(—v — 1) by the Hurwitz
formula. We conclude that for each cover o: C' — P of degree 4 we have the
following isomorphism

(2.4) 0:0c 2 Op1 ® Opi(—y - 1) @ . L.
Proposition 2.5. Let C € M, and let v be a positive integer such that g >
4v+2 > 6.

i) If C € B] then its scrollar sequence is
(25.1)  (a1,00,035,81,8)=(v+La,9g—7+2-0a,2y+2,9g—2y+1),

where v +1 < [(g — 27 +2)/2] =: Qmin < @ < Omax == [(9 — 7+ 2)/2]
and

a=min{ h€Z | ¢*Op1"(h) ® L7 is effective }

where £ and ¢ are the ones defined above. Moreover bo,yoy—p, =
ba—gt+3y =0, bayaz—8, = baytr2—a = 0 in Equations (1.6).

ii) If o: C = P{ is a cover of degree 4 with scrollar sequence (2.5.1) and
bart+as—8: = ba—gtzy = 0, bagtaz—p, = bayt2—a = 0 in Equations
(1.6) then C € B].

Proof. The case v = 1 has been already described in Section 3 of [8] (see also
[9] and (3]), thus we can assume v > 2, hence g > 4y + 2 > 10, so that the
hyperelliptic involution on I" is unique. Then g = ¢ o 1) where ¢: C — T is
induced by i¢ and ¢: I' - P{ is an hyperelliptic involution on T'.

Formula 2.4 implies that one of the scrollar invariants of g is v+ 1, hence the
sum of the remaining two is g —y + 2 > 3y + 4 by Remark 1.7 a). Thus either
Y+1l=aandoy >vy+1oraz <. Inthesecond case az = g—v+2—ay >
g — 27+ 2: since a; +ay > as (see [5], Proposition 1.1) this is not possible due
to the hypothesis g > 4+ + 2, hence

(252) (p*ﬁ_l = OP}:(_QQ) &) O]p%(—ag).
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Consider the pair of points on C' conjugated with respect to i¢. Such points
generate in the general fibre of 7 a pair of lines, thus we obtain a relative
degenerate conic T' C P containing C. Consider the closure Ty of the singular
locus of B in the general fibre. Then Remark 1.7 c) yields Top N C = @ since C
is smooth, hence we can assume that AN 7Ty = @, again due to Remark 1.7 c).

Since Tj intersects each fibre of 7 in a point, we obtain 0 = A-Ty = 2£-To—f,
¢ being the tautological class of A(P), whence () is even. Since 81 < 2a; by

Remark 1.7 b), then |(9]p(1) ® 1 Op1(—p1 /2)’ is base-point—free, hence each

general member H € ‘OP(I) @ " Opr(—P1/ 2)‘ intersects 7' along a smooth

curve and the projection from Ty makes H N'T and I" isomorphic.

Let Op(T') = Op(2) ® 7*Op1(—n): necessarily n < S since the ideal of C is
globally generated by A and B. Adjuntion on P yieldsn =g —~v+2 - £;/2.
The hypothesis g > 4v + 2 and the restriction 8; < 2y + 2 (see Remark 1.7)
imply 29 —2v+4 > 67y+6 > 36;, whence we obtainn = g—~v+2—51/2 > Bi.
It follows that T must be a multiple of B: since it does not contain fibres by
construction, it follows T' = B, i.e., n = 85. Since H NT = T, adjunction on
P and the equality 81 + 82 = g + 3 (see Remark 1.7 a)) yield 8; = 2y + 2 and
Ba=g—2y+1.

In particular the equation

0 ba—g+3’y b2'y+2—a
0:= |ba—gt+3y bra—gtzy—1  byn
boyi2—a byy1 bgi3—24

of the discriminant A of B must be identically zero.

If bo_g+3y # 0, then it has to be proportional to bgy42_q since § = 0. Thus
up to a proper automorphism of £ of the form (u,v,w) — (u,v + dw,w), A
being a suitable linear form of degree g—v+2—2a, we can assume bayy2_o =0,
hence é = bz_g+37bg+3_2a. It would follow that b,13_24 = 0. If this were the
case B, hence C, would be reducible, whence we conclude that bq_g43, = 0.
A similar argument now shows that ba,4+2_o = 0 too.

Since & = ap < a3 = g—v+2—a then a < amax. Moreover Formula (2.5.2)
yields

H(T,p*Opy*(h) @ L7) = H°(Pg, Opi(h — az)) ® H°(Pg, Opi(h — a3)).

In particular if h = o then ¢*Op1"(h) ® L' is effective, whereas if h < a <
g—~+2— «then go*(’)]pé*(h) ® L£7! is non-effective. Finally notice that if
h < [(g = 2v)/2] then deg(y*Op1"(h) ® £L7') < —1, hence & > emin.
Conversely if by —g43y = bay+2-o = 0 in Equations (2.6.2), then B splits on
the general fibre of 7 in a union of two distinct lines each of them containing two
points of C. Thus the projection from V' N W onto a general Uy € |U| induces
acover ¥: C = I' := U N B of degree 2. Since B is smooth outside VN W
and |U| is base-point—free then T' is smooth and connected. Since I' = U N B,
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adjunction on P shows that its genus is . Since the map ¢ := m|r is necessarily
a cover of degree 2 then I' is hyperelliptic. We conclude that C € Bj. O

Remark 2.6. Notice that Proposition 2.5 asserts that the two sheaves £ and F
defined in Section 1 and naturally associated to the induced cover of degree 4
are
£7(a) = Opa(y + 1) @ Opa(@) & Opa(g — 7 + 2 — a),
Fqg =0p(2y+2)6 Opi(g — 27 + 1)
for some amin < @ < @max. Moreover C is bihyperelliptic if and only if C =
Do(a,b) C P(£] () where

a(u,v,w) = agu?® + 20q—y—1UV + 204_2y 41— UW+
2 2
(2.6.1) + 020—2y—20" + 2a4_3,0W + A2g_ay42-22W",
2 2
b(u7v7w) = b2a—g+2'y—1'v + 2b'y+1vw + bg+3—2aw ’

an, b € H° (]P%:,O]p(l:(h)).

3. Bihyperelliptic curves with fixed scrollar sequence

In the previous Section we proved that once the two genera g and ~ are fixed,
then the scrollar sequence of each point in B] depends only on the number o.
Thus it is natural to stratify the locus B] with respect to such a number a.

Definition 3.1. Let ¢ > 47 + 2. For each integer « in the range ap, <
0 < Qpax We denote by By (a) the locus of C' € B7 having scrollar sequence
(Y+lLa9—7v+2—a,2y+2,g—2y+1).

The loci By with v = 0,1, 2 are components of the singular locus of M, (see
[6]). In particular they are non-empty and irreducible of dimension 29 —2y+1.
We now want to extend such properties also to all the loci B} and B)(a) for
each values of « and ~.

First of all notice that B} (a) # @ in the considered range. Indeed ¢* Op1 ()

is very ample for each a > ampin: let T — ]P’é"‘” be the corresponding embed-
ding as curve of degree 2a: > g—2y+1. Since @ < qupin then g—2v+1 > 20—+,
hence we can find g — 2y+ 1 points of I' which are in general position in a fixed
hyperplane. The corresponding invertible sheaf £ is such that ¢* O]pé(a) QL1
is effective but ¢*Op1(a— 1) ® L' is non-effective. Moreover £ is very ample
since g —2y+1 > 2v+3, thus we can find a section s € H°(T', £2) with smooth
zero locus, which thus defines a point C € Bj(a).

For each « in the range amin < o < Omax we define by Uy (c) the set of
(a,b) € Uly+1,0,9—y+2—a,2v+2,9-2v+1) Of the form (2.6.1). We have natural
surjective rational maps 97 (a): U] (a) --+ B)(a). We now want to deal with
97 () proving that they are equivariant with respect to the action of a suitable
algebraic group, and we wish to identify their generic fibres. To this purpose
we recall the following
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Definition 3.2. Two covers p: C — PL and ¢': ¢' — P are said to be
isomorphic if there exists a commutative diagram

e 1

cC — Pg
0 A

1 o 1
¢ — Pe

for some suitable A € PGLs and isomorphism % C — C'.

Let (a,b), (a',b') € U](a) be sections giving rise to isomorphic covers
0:C = Pl and o': C' - PL. Since the Tschirnhausen modules of ¢' and
A o g coincide with £)(a) we then obtain an automorphism p € Ej(a) :=
Aut(E) (a))/C* (C* is identified with the normal subgroup of scalar matrices).
Finally consider the diagram

0 = F - S - oy~ 0

2
i
0 = F} - S&(@ - Q;w%”lﬂ”é - 0

—
)

where i is any lifting of p. In particular we obtain v € F) := Aut(F))/C*
(again C* is identified with the normal subgroup of scalar matrices). Thus
if (a,b) and (a',d’) define isomorphic covers there is (A, pu,v) € GJ(a) =
PGLy X (E](a) x F)) such that (A, pu,v)(a,b) = (a',b'). Conversely if this
happens it is clear that the induced covers are isomorphic. This proves the
first assertion of the following

Lemma 3.3. Let -y be an integer such that g > 4y+2 > 10 and let apmin < o <
Qmax- Then Gj(a) acts on U] (a) with finite generic stabilizer and the fibres
of ¥} (a) are ezactly the orbits of its action.

Proof. Let C € BJ(a). Assume that C = Dg(a,b) C P(£]()). Due to the
above description the map onto the fibre defined by (\, pu,v) — (A, u,v)(a,b)
surjects onto the fibre of ¥](a) over C. This proves the second part of the
statement.

We claim that the stabilizer G7 (a)(a,4) is finite for a general (a,b) € U] ().
Indeed, due to the semicontinuity of the dimension, it suffices to check that the
pair (a,b) where

a(u,v,w) = apu® + a2a—27—2'v2 + a'2g—4'y+2—2aw27

b(u,v,w) = 2b,11vw,
has finite stabilizer for general an, by € H°(Pg, Opi(h)). Each (A\,p,v) €
Gg(a)(a,b) must fix both a and b, hence the product asa—2y—202g—4y+2—2a:
since it has degree at least 8 then A = id for a general choice of (a, b).

Let u and v be represented by the matrices (p; ;)o<i,j<2 and (¥ ;)o<i j<1
respectively. Due to our numerical restrictions on a, g,y we have p1 90 = 2,0 =
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v1,0 = 0. Since b does not contain terms in u and a is fixed by (A, u, v), it also
follows that o1 = pto,2 = 0. We have the system

Vo,o/l%,o SV, H2,2 T VL 2021 =P
Vo,oﬂ%,ﬂl + VO,OJ”%,IGQ + 2v9,1p2,1 p12,1b = pay
Vo,oH%,zal + Vo,oug,z% + 2v0,1 11,2 42,20 = pas
Vo,0M1,1 41,201 + Vo opi2,1 2,202 + V0,1u1,1u2,2b + V0,1M1,2H2,1b =0
VI M2, = Ve =0
for some non-zero p € k. If either p; 2 # 0 or us 2 # 0 we get an absurd. Thus

we obtain ug o = pi 1 = 3 5, vo1 = 0 and ¢4 = vZ,. Thus we obtain a finite
number of elements in £](a) and in F (). a

Finally we can prove the main result of this Section.

Proposition 3.4. Let v be an integer such that g > 4y + 2 > 10 and let
Omin < a < @max. Then the locus Bg(a) is non—empty, irreducible, unirational
and

g_7+2a_1 ifazamax;

dim(BY =
im( g (@) {g -7+ 2 otherwise.

Moreover B](umax) is dense inside B). In particular By is non-empty,
irreducible and unirational of dimension 2g — 2y + 1.

Proof. The non-emptyness of B) (a) has been checked above (see the discussion
after Definition 3.1). The surjectivity of 9 (a): Uy (a) --» B](a) yields the
irreducibility and unirationality of B](a). Moreover Lemma 3.3 above shows
that

dim(B;(a)) = dim(l/) (@) - dim(G7(a)) = 7 - 5y + 3g — dim(E] (a))).
The statement about the dimension of B) () then follows since

7T—4y4+29—-2a+1 if @ = amax,

dim(E7 =
im(Eg(a))) {7 — 4y +2g - 2a otherwise.

In order to prove the assertion on B, it suffices to check it is irreducible
and dim(B]) = dim(B](max)). Let Hyn C M., be the locus of n—pointed
hyperelliptic curves of genus .

Let T' € M, be hyperelliptic and let ¢i,...,g2,+2 be the fixed points of
the involution on T. Then |g; + -+ + g2442| embeds T in PZ™? as the inter-
section of the cone ¥V on the Veronese curve in IP’%H with a quadric. Let

H C H°(V,0v(2)) be the set of sections s such that Dy(s) is a smooth and
integral curve. The projection

IT:={(s,p1,...,pn) €EHXV"|s(p;)=0,i=1,....,n} > H
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is proper, surJectlve and its ﬁbres are integral varieties of dimension n, thus
T is irreducible. 'Since we have a natural surjective morphism Z — H., ., it
follows that ., is irreducible too.

In order to check the irreducibility of By, let B} ,, 4,10 C Mg2g_4y+2 be
the locus of (2g — 4y + 2)-pointed smoqth curves of genus g carrying a 2 : 1
map over a smooth hyperelliptic curve of genus ~ ramified at the 2g — 4y + 2
marked points. We have a diagram

Biag-aviz = B
»p

H7,2y—47+2

where the horizontal arrow is the natural forgetful morphism, which has finite
fibres due to the definition of BY .2g— 442> and the vertical one is the morphism
associating to each curve the hyperelliptic curve it covers.

Since H.,29—4+2 is irreducible, from [6], Remark 1, it follows that the mor-
phism p is a topological covering whose monodromy acts transitively on the
fibres. Hence we deduce that B 24—4, 42 is smooth and connected, in particu-
lar it is 1rreduc1ble O

Remark 3.5. We conclude thls Section with a remark on the automorphism
group Aut(C) of C' € Bj(e) when g-> 4y +2 > 10.

On one hand, as pointed out in the introduction, bihyperelliptic curves have
been recently studied in [11]. In the paper the authors study bihyperelliptic
curves C' with at least two commuting involutions, hence such that Z, x Zy C
Aut(C), proving that the locus of such curves in M, is highly disconnected. On
the other hand we have just proved above that the locus of bihyperelliptic curves
is irreducible for g > 4y + 2 > 10. These two results are not in contradiction
since the general bihyperelliptic curve C of genus g > 4 + 2 > 10 satisfies
Aut(C) = Zs

. In order to check this assertion we first notice that in any case ic € Aut(C),
thus Z; C Aut(C). Let € € Aut(C). Since the g} on C is unique it follows that
e fixes this linear series, thus ¢ induces two elements A € PGL; and 1 € E](a).
In particular we obtain an element (\,u) € PGLy xE(a) € Aut(P(£](w)))
fixing C' = Do(a,b) C P(£)(a)) and whose restriction to Do(a,b) coincides
with €.

Since A must fix the branch locus of the cover ¢: C — P§ which has degree
29 + 6, then A = id for a general choice of C. Moreover C carries a unique
involution of genus < (see Lemma 2.2), thus (u; j)o<i,j<2 must fix the divisor
B := Dy(b), hence b up to scalars. If 2o < g — v + 2 then bz ; = 0 and we can
assume

2 _
B11b2a—g+2v~1 = b2a—gt2y—1
P11 41,2020 g+ 24—1 + f1,1 42,2011 = byy
2 2 _—
M 2b2a—g+29-1 + 201 2042,2b5 41 + 15 5Dg 4320 = Dyy3-20
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whence p1» = 0 and py g = poo = 1. 20 = g - v+ 2 then p;; € C,
1 <4,j < 2 and the vectors of C* representing the coefficients of the same
monomials (if any) in byq—g42y—1, by41, byr3_24 must be eigenvectors of S? .
These vectors are at least v + 2 > 4, hence p acts as the identity on v, w.
Thus again p11 = pos = £1, o = po1 = 0. Since A := Dy(a) must be
transformed by 4 into a conic in the pencil generated by A and B then we also
obtain pi9,1 = g0 and pd o = 1, thus Z, = Aut(C).
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