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EXTREMAL PROBLEMS ON THE CARTAN-HARTOGS
DOMAINS

AN WANG, XIN ZHAO, AND ZHIYIN LiU

ABSTRACT. We study some extremal problems on the Cartan-Hartogs
domains. Through computing the minimal circumscribed Hermitian el-
lipsoid of the Cartan-Hartogs domains, we get the Carathéodory extremal
mappings between the Cartan-Hartogs domains and the unit hyperball,
and the explicit formulas for computing the Carathéodory extremal value.

Part I. Introduction

In the theory of single complex variable, Riemann mapping theorem has the
important theoretical and practical meaning. According to the theorem, the
problem about the classification of simple connected domains in the complex
plane has been resolved. To find the extremal function of the extremal problem

sup | f'(20) (20 € Q)
fEF(Q)

is a key step of proving the Riemann mapping theorem, where {2 is a simply
connected domain in C with at least two boundary points and F(Q) is the
family of all functions f such that f maps  conformally onto the unit disk, it
is holomorphic and |f(z)| < 1 in €.

As is well known, Riemann mapping theorem fails for domains in C* with
n > 1. But the similar extremal problem is still significant to study in the
theory of several complex variables: Let M be a domain in C* and ¢ € M. Let
M, denote the couple (M, q), a “pointed domain”. For two pointed domains
My, and Ng,, let Hol(M,,, Ny, ) denote the set of holomorphic maps from M
to N that send g1 to gz. A map f € Hol{M,,,N,) is said to be Carathéodory
extremal map, if

| det df (q1)] = sup{| det dg(q1)| : g € Hol(My,, N},
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where dg(q1) denotes the Jacobian matrix of g at the point of ¢;, and now
| det df (g1)] is called to be Carathéodory extremal value. Simply, we call them
C-extremal mapping and C-extremal value. The classical problem can be con-
sidered as an extension of the classical Schwarz lemma in high dimensions [3].

For the extremal problem, the important part is the computing problem
for extremal mapping and extremal value in explicit formulas. Carathéodory
firstly studied the C-extremal mapping and obtained the explicit formula for
C-extremal mapping from the polydisc into the unit hyperball B® in 1932 [1].
Kubota obtained the explicit formulas for C-extremal mappings and values
from the Cartan domains into the unit hyperball B® with the method of series
expansion [4], furthermore he discussed the extremal problems between all
the bounded symmetric domains and B™ [5]. He proved that the extremal
mappings which he obtained are unique up to unitary linear transformations.
Ma Daowei obtained the explicit formulas for the C-extremal mappings from
convex generalized ellipsoid to B™, and gave the formulas for the C-extremal
mappings from B™ to generalized ellipsoid, which may not be convex [3].

In terms of C-extremal mappings, the extremal distance between two pointed
domains is defined to be

(Mg, Ng,) = —log| det d(g o f)(a1)l,

where M, N are two bounded domains in C* and ¢; € M, ¢ € N, moreover
f € Hol(Mgy,, Ny,), g € Hol(Ny,, M,, ) are C-extremal mappings.

Ma Daowei also obtained the extremal distance between the complex ellip-
soid and B™ [3], and the extremal distance between the strongly pseudoconvex
domain and B™ [2]. The extremal distance is an effective means for estimating
Kobayashi metric, Carathéodory metric, Sibony metric and Eisenman volume
forms of domains in C*.

Yin Weiping and G. Roos constructed four types of domains called Cartan-
Hartogs domains [7], and the four types of Cartan-Hartogs domains are:

Yi(N;m,m; K):={WeCVN,Z¢ Ri(m,n) : |[W|*K < det(I — ZZ%),K > 0},
Yii(N,p, K) := {W € CY, Z € Ry1(p) : |W|]*, < det(I - ZZ%), K > 0},
Yir(N,q,K) :={W € C",Z € Rips(q) : |[W|*K < det(I — ZZ%),K > 0},
Yiv(N,m, K) = {W € GV, Z € Ryv(n) : WK < 1- 223" + |22, K > 0},
where Ry, = I,II,II1,IV denote the four types of Cartan domain in the
sense of L. K. Hua, Z* denotes the transposed of Z, det denotes the determinant

of a square matrix, NV is a positive integer, and K is a positive real number.
In this paper, we discuss the Carathéodory extremal problems on the Cartan-
Hartogs domains. The form of Y7;(N, p, K) is more special, the method is skill-
ful and have a difficulty to get the minimal circumscribed Hermitian ellipsoid of
Yi1(N,p, K), so we prove the conclusions about the C-extremal mappings and

C-extremal values of Y71 (N, p, K) in detail. But we can use the similar method
to get the C-extremal mappings and C-extremal values on Y7 (N;m,n; K) and
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Yi11(N,q,K), so we list the main results about the Carathéodory extremal
problems on the two Cartan-Hartogs domains in the last part of the paper.

Part II. Preliminaries
For two pointed domains M,,, N, C C", let

JmaX(Mqquz) = sup{|detdg(q1)| : g € HOI(ququ)}‘
Obviously,

M(MQ17NQ2) = _log[Jmax(ququ) ' JmaX(quM‘h)]'

If M and N contain origins, we write
Jmax(M:N) = Jmax(M07N0)7 M(MvN) = IU(MO)NO)'

Proposition 1 ([3]). If Dy, Dy are balanced domains (i.e., cz € D; for c €
Cle|l €1 and z € D;(i = 1,2)) and if Dy is a holomorphic domain, then any
holomorphic mapping f € Hol((D1,0),(D-,0)) satisfies df (0)(D1) C D,.

Proof. See [3]. a
By Proposition 1,
Jmax(D1,Ds) = sup{| det!| : I complex linear map, (D7) C D»}.

Definition 2 ([3]). An Hermitian ellipsoid centered at origin is a domain of
the form:

{z e C": 247" < 1}
or

n
{Z eC": Z aii2iZK < 1},
Jik=1
where A = (a;x) is a positive definite Hermitian matrix.

n
Proposition 3. For a Hermitian ellipsoid S = {z € C" : Y ajnz;Zr < 1},
7.k=1
V(S) = mwn, where V(S) denotes the volume of S, and w,, denotes the
volume of the unit hyperball of dimension n .

Proof. As (aji) is a positive definite Hermitian matrix of order n, there exists
a unitary matrix U, such that

(aje) = U AU,
where

VAL 0
A= 0 \/E 0

0 0 -

ALZ A2 22 A >0
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Then
(215, 20)(@k) 1y - Zn)t = (21, - .., 20)U A2U(Z1, . .., Z0)".
Hence we get a linear transformation
l: §$ — B”
(215 2n) = (21, .., 2a)T AL
Let w,, be the volume of B, then

1 1
vis) = /des’ = /B [detdi? ™ = Tdet(an)] "
O

Proposition 4 ([3]). Let D be a domain in C*, containing the origin. If 1
is a complez linear map such that (D) C B™, then I"'(B") is a Hermitian
ellipsoid containing D. Ifl is a solution of the extremal problem

sup{|det!| : I complez linear map, (D) C B"},

then I=1(B™) is a circumscribed Hermitian ellipsoid of D of least volume, or a
minimal circumscribed Hermitian ellipsoid. If m is a solution of the extremal
problem

sup{| det m| : m complez linear map, m(B™) C D},

then m(B™) is an inscribed Hermitian ellipsoid of D of greatest volume, or a
mazimal inscribed Hermitian ellipsoid.
Proof. See [3]. O

Let D be a bounded domain in C*, we write Q(D) to be the minimal cir-
cumscribed Hermitian ellipsoid of D, and P(D) to be the maximal inscribed
Hermitian ellipsoid of D.

Proposition 5. Let D and Dy be bounded domains, if | € GL(n,C), and
U(D1) = Dy, then I(Q(D1)) = Q(D2) and I(P(D;)) = P(Dy).

GL(n,C) denotes the set which consists of nonsingular matriz of order n in
C, and it is called the general linear group in C.

Proof. Let L be a solution of the following extremal problem
sup{| det p| : p complex linear map, p(D;) C B"}.

By Proposition 4, L~!(B™) is the minimal circumscribed ellipsoid of D7, and
it is written to be Q(Dy).

Since I € GL(n,C) and I(D;) = Dy, it follows that L o [~! is a solution of
the extremal problem

sup{| det p'| : p' complex linear map, p'(D;) C B"},
furthermore
(Lol™)™H(B™ =UL(B™)) = I(Q(D1)) = Q(Dy).
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By the same means, we can get I(P(D;)) = P(Ds). a

Proposition 6. Let D be a bounded domain in C*. Then D has minimal
circumscribed and mazimal inscribed Hermitian ellipsoid, and the minimal cir-
cumscribed Hermitian ellipsoid of D is unique. In addition, if D is conver and
balanced, then the mazimal inscribed Hermitian ellipsoid is also unique.

Proof. See [3]. a

For the convenience of the following discussion, we let

M:p(p;rl)'

Proposition 7. Both BN*M and Y;;(N,p, K) are balanced domains.

Proof. Obviously, BN*M ig a balanced domain.
Next we prove that Y7;(V;p; K) is a balanced domain: If

V(w,Z) € Yii(N;p; K)

and V c € C,|¢| < 1,then cZ € Ry/(p), and ||cw||*X < det(I — cZeZ).
For Z € R;;(p), there exists a unitary matrix U4 such that

Z = U'AU
and
I-2Z =U'I-A)TU >0,

where

A0 0
(%) O Ol Mzhz- %20

0 0 Ap
then 0 < N2 < 1,i=1,...,p.
Here

I[—cZeZ =1-|c|?ZZ = UY(I — |c[*A®)T.
Because |c|? <1, 1—[¢2A2 > 1-A?>0,i=1,...,p.
Thus I — c¢ZeZ > 0 and c¢Z = (cZ), i.e., cZ € Ri1(p).
Furthermore

det(I — ZZ) < det(I — cZeZ)
S0
llew||*2 < ||w||*® < det(I — ZZ) < det(I — cZEZ).
Hence the proposition is true.

In the same way, we can get that both Y;(N;m,n; k) and Yrrr(N,q, K) are
balanced domains. O
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Part III. Extremal problem on Y;;(N,p, k)
1. The form of the minimal circumscribed Hermitian ellipsoid

Lemma 8 ([8]). Let A,xn and B,xn be two positive definite Hermitian ma-
trices. If ,

{zeC*: 247" <1} = {2 € C* : 2Bz* < 1},
then A= B.

Proof. See [§]. ]

Explanation [6]: In order to do the following discussion, we let

Zjk
Z = (= )1gjk<p

V2pik

be symmetrical matrix of order p, where

1 =k,

Djk = V2? ']

1 J#k
We arrange the elements of the matrix Z in the form of a vector in CM according
to the following sequence:

z = (Z11,212, L 7z1p5222a 3 Z2py e ’ZPP))
and ||2]|2 = tr(ZZ").
Proposition 9. The minimal circumscribed Hermitian ellipsoid of Yi1(N, p,K)
must have the form:
S(a,b) = {(w,z) € CV*M : aljw|® + bl|z|]* < 1} a>0,b> 0.

Proof. For ¥V (w,Z) € Yi1(N,p, K), we write w = (wy,ws, ..., wy), and Z =
(\/—ZTZCT;)lgj’kgp € Rr7(p), where pj; is the same as the definition in the expla-

nation.
Now we think about the following mappings:

1. 6’7: YII(N7p>K) — YII(NapaK) ’Y=1;7N

wy o —w,

ws W é=1,...,y—1,v+1,...,N.

Zik & Zik i=L....;k=1,...,p; < k.
2. 8w Yu(N,p,K) — Y(N,p,K) 1€u<v N

' Wy Wy

Wy Wy

ws  — ws 6=1,...,N, and § # u,v.

Zik " Zk i=l,...,;k=1,...,p;5 < k.
3.0 Yy(N,p,K) — Y (N,p K) r=1,...,p.

ws W (5=1,...,N.

z = z[A, xAL
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A, =1 - 2I,,., where I is a unit matrix of order p, and I, is a matrix
of order p, in whose elements the element on the crossed-point of line m and
column n is 1 and others are 0.

[Ax A, is the symmetric Kronecker product of two square matrices A [6]. Let
A = (0c4)pxp, and the indexing sets (c7) (¢ < 7), (dw) (d < w) are ranged with
the fixed sequence (1,1),(1,2),...,(1,p),(2,2),...,(2,p),-..,(p,p), then the
element 6(.;)(4.,) on the crossed-point of line (¢7) and column (dw) of [A x A],
is

G(CT)(dw) = PerPdw (gcda‘rw + chord): & g T, d < w,

where .
Der = V2’ ok
1, c#T.
4'"04[3: YII(NapaK) — YII(N7p7K) 1<a<5<P

ws > ws é6=1,...,N.
z (g z[Aa,B -XAQB]?S
where Aag =1—-1,4 — Igg + Ing + Igq.

Obviously, these mappings such as &, £uv, 7, g are in GL(N + M, C), and
& (Yir) = Yir, §uo(Y1r) = Y, (Y11) = Yir, m0p(Yir) = Yi1.

Let S(a, b) be the minimal circumscribed Hermitian ellipsoid of Y7, (N, p, K),
according to Proposition 5, &,(S(a,b)) = S(a,b), &u.(S(a,b)) = S(a,b),
nT(S(av b)) = S(aa b), ﬂaﬂ(s(a, b)) = S(aa b)

Let the form of S{a,b) be

A C

S(a,b) = {(w,z) € CN*tM : (w, 2) ( & B ) (w,z)" < 1},

A C
C B
is a positive definite Hermitian matrix, A is a square matrix of order N, and

B is a square matrix of order M.
Because &,(S(a,b)) = S(a,b), vy =1,..., N, we know from Lemma 8

where

ag 0 -+ 0
Ao 0 a -~ O
0 0 - ap
and C' = 0.
Because &,,(S(a,b)) = S(a,b), 1 < u < v < p, we know by Lemma 8
a 0 0
A= 0 a 0 ’
0 0 a

where a > 0.
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For #,(S(a, b)) = S(a,b), according to Lemma, 8

("o ) (5 5) (0 o )= (5 5)

With the inductive approach, we obtain

by 0 --- 0
B 0 b -~ 0
0 0 - by
By the transformation 7,4 and Lemma 8, we can get
b 0 --- 0
B=| 0 2 e
0O 0 --- b

Generalizing from the above proof, the form of the minimal circumscribed
Hermitian ellipsoid of Y (N, p, K) is

S(a,b) = {(w,z) € CVN*M . g|jw|®> + b]|z||* <1} a >0, b> 0.
a
In the same way, we get that the form of the maximal inscribed Hermitian
ellipsoid of Y1;(N,p, K) is
R(c,d) = {(w,2) € CV ™™ - ¢llw|® + d||z|> < 1} ¢>0, d > 0.

2. The inscribed ball of Y;; (N, p, K)

Lemma 10 ([8]). If there are a1,as,...,a, > —1, and the nonzero numbers
among them are all positive or negatwe then 14+ a))(l +a3)---(1+a,) >
14+ (ay+as+-- -+ ay).

Proof. See [8]. O

Proposition 11. When K > 1, the unit hyperball BNtM s the mazimal
inscribed ball of Y11(N,p, K).

Proof. Firstly, we prove BN*M C Yi;(N,p, K).

Because BN+M and Y;;(N, p, K) are all the balanced domains, we only need
to prove I — ZZ > 0, and ||w||>* < det(I — ZZ), when V (w, Z) € 0BVNtM je.,
lw||? +tr(ZZ) = 1.

For the symmetric matrix Z of order p, there exists a unitary matrix U, such
that

Z = U*AU,
where A is the same as the equation (%), then

(ZZ) = o (U'RT) =t (TU'R?)



EXTREMAL PROBLEMS ON THE CARTAN-HARTOGS DOMAINS 1209
= MN+M+--+ A
Because ||w||? + tr(ZZ) = 1, we know tr(ZZ) < 1, furthermore 1 > A} >

A2--2X>0,andI-ZZ >0.
Because |jw||> = 1 — (A} + -+~ + A2), when K > 1, by Lemma 10, we get:

Jwll < flwl® = 1= O3 +---+ X)) <A =A) - (1= X)) = det(I ~ Z2).

In summary, BNt™ Y7 (N, p, K).

Secondly, we prove that there are common points on the boundary of BN+M
and Y (N,p, K).

Let

e;=(0,...,0,1,0,...,000 e CN*M ' =12,...,N,
i-1

then e; € 8BN*M and it is easy to check that e; € Y (N, p, K). Soe; (i =
1,2,...,N) are the tangent points of BY+*™ and Y (N, p, K).

At last, we prove that BVY*M jis the unique maximal inscribed ball of
YII(Na D, K)

we have known that the form of the maximal inscribed Hermitian ellipsoid
of Yi;(N,p,K) is

R(c,d) = {(w,2) € CV*M : cflw|® + d||z||* < 1} ¢ >0, d>0.
For Y(w, Z) € 0Yr1(N,p, K), there is c||w||? + d||z||* > 1.

Let e = (1,0,...,0,0,...,0) € CN*M then |2]|? = 0,||w||*> = 1.
e —
N+M—-1
Since c||w||* + d||z]|> > 1, we get ¢ > 1.
Let ¢/ = (0,...,0,1,0,...,0)* € CN*M then ||z|*> = 1, ||w||*> = 0.
SR A

N M-1
Since c||lw||? +d||z||*> > 1, we get d > 1.
Furthermore V(R(c,d)) = ¢~ Nd " Mwy iy < V(BYNM) = wyym.
From the above discussion, we can obtain that BV is the inscribed ball
of Yi1(N,p, K), and it is also the unique maximal inscribed ball. (]

3. The minimal circumscribed Hermitian ellipsoid
Lemma 12. IfY;;(N,p,K) C S(a,b)(a > 0,b > 0), then0 <a < 1,0<b g %.

Proof. Let V (w, Z) € Y1 (N,p,K), where Z € Ry;(p). As for Z, there exists
a unitary matrix U, such that

Z = U'AU
and
Z7 = UtA*T,

where A is the same as the equation (%).
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Because I — ZZ > 0, Ut(I — ./T")U > 0, furthermore we can infer
OS¢ <M<l
Thus
tr(ZZ) = tr (UtKZﬁ) =XN+XB++X2<p,
and

lw|?¥ < det(I — 2Z) = (1 - A)(1-33)---(1-X) < 1

Since (w, Z) € Y11(N,p, K) C S(a,b) (a > 0,b > 0), it follows that
allw|® < al|lw|)® + btr(ZZ) <1, btr(ZZ) < a||w||® +btr(Z22) < 1,

furthermore 0 < a <1, 0< b < O

For V (w, Z) € 8Y;(N,p, K), we can obtain the following results:
According to the proof of Lemma 12, for V (w, Z) € 8Yr1(N, p, K), we get

[w]** = det(I - 2Z) = (1 - A1 - 32)--- (1 - A2).

Let \; = 32,i = 1,...,p, then [[w|[?X = (1= A)--- (1 = \,).
Thus

al(1 = A= Ag)--- (1= M\)]*
+b(Al +)\2+.+)\p)

allw||? + btr(ZZ)

12 x P
< a(l—;;)\l> +blz:;)\l
= a(l-XN% +bpA

L&
whereA:I—Jg .oy

Let g(a,)(A) = a(l — \) % + bp), with which we will discuss the conditions
that Y7;(N,p, K) C S(a,b) and there are tangent points between them.

Lemma 13. Y;;(N,p,K) C S(a,b), and there are tangent points between them
if and only if /\m[%)i] 9a,p)(A) = 1.
e b

Proof. (sufficiency)
When V (w, Z) € 8Y;;(N,p, K), we know from the above discussion,

allw|]? + btr(ZZ) < a(1 = N ¥ +bpA < rg[ax] I@p(A) =1,

thus (w, Z) € S(a, b), furthermore Y7;(N,p, K) C S(a, b).
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Let Ao € [0,1), g(a5)(X0) = max Japy(N) =1,and Ajg = Agg = -+ = Ao =
A, then we construct
5\10 ~0 - 0
Zo = Ut 0 g -+ O U
0 o --- j\po

where U is a unitary matrix. Obviously Z§ = Zo,I — ZoZy > 0, ie., Zg €
Rir(p).

Let wo = ((det(I — ZoZo)) 2 ,0,...,0) € CN, then |jwo||?% = det(I - ZoZy),
i'e'a (w07 ZO) € aYII(Napv K)

Moreover al|wol|? + btr(ZoZo) = a(l — Xo) & + bpho = 9(a,p)(Xo) = 1, then
(wo, Zo) € 8S(a, b)

Hence Yr1(N,p, K) C S(a,b), and there exist tangent points between them.

{necessity)

(1) Assume )\lg[%)i] 9(a,p)(A) > 1, then let Ao € [0, 1), such that g, 5 (M) =
Iax 9a,b) (A).

Let (wo, Zo) be the same as the form in the above proof, then [Jwo|>%
det(I — ZyZy), ie., (wo,Zo) € OYi1(N,p,K), and allwo|®> + btr(ZoZo)
9(ap)(Ao) > 1, it is in contradiction to Y7;(N,p, K) C S(a,b).

(2) Assume /\rg{g)i] 9(a,p)(A) < 1, then let (w,Z) € 8Yr(N,p, k) N dS(a,b),

Il

ie. |02 = det(I — ZZ) and alld|]? + btr(Z2) = 1.
But a||@|>+btr(ZZ) < Iap)(N) < Am[%x]g(ayb)()\) < 1, it contradict (@, Z) €
€[o,1
dS(a,b).

Generalizing from the above proof, the lemma is true. O

If Y1 (N,p,K) C S(a,b), and there are tangent points between them, then
S(a,b) may be called the circumscribed domain of ¥;;(N, p, K).

Next we are going to discuss the accurate form of the minimal circumscribed
Hermitian ellipsoid of Yi; (N, p, K):

I K=p
Lemma 14. When K = p, S(a,b) is the circumscribed domain of Yi1(N,p, K)
if and only if b= > and 0 <a<1,0ora=1and0<b< %.

Proof. When K =p ,guun(A) =a(l—-A)+bpr=a+(bp—a)d A€(0,1].
From Lemma 12 and Lemma, 13, we know:
(1) When 0 < a < bp and A =1, g, () attains the maximum:

(A = gram(1) = bp =1,
e, g 5 (X)) =9g@p(1) =bp

thenb::—),0<a<1;
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(2) Whena >bp>0and A =0, 9(a,5)(A) attains the maximum:

Arg[%ﬁ]g(a’b)(’\) Ian() =a=1,

then0<b<%,a=1. |

Theorem 15. When K = p, the minimal circumscribed Hermitian ellipsoid
of Y11(N,p, K) is
1
{(w,2) € CV*M - Jlw|? + 5|IZ||2 <1}

Proof. Because of Proposition 3, the volume of the ellipsoid
S(a,b) = {(w,2) € CV*M : ajw|]®> + b]|2]2 < 1} @ >0, b>0
is
V(S(a,b) = a Mo Mwnia.

Hence

min  V(S(a,b) =V (s (1, %)) =pMwninm;

b:i—,0<a§1

min  V(S(a,b)) = V (s (1, %)) = PMun i

a=1,0<b< ]
Thus when K = p, S(1, ;—)) is the minimal circumscribed Hermitian ellipsoid
of Y71(N, p, K). O
(I) K>p

Lemma 16. When K > p, S(a,b) is the circumscribed domain of Yi;(N,p, K)
if and only if bp + b(K ~ p)(;%)%+ = 1 and 0 < a < Kb, or a = 1 and
1>Kb>0.

Proof. When K > p, g(a.py(A) = a(1 — \)% + bpA.
It is easy to check that gi, ) (A) (A € [0,1]) is a continuous function, and
when A # 1, it is differentiable :

’ a —K
Tamy M) = =FA=NF +bp (A£1).

Let g(a’b) (A) =0, we get

(1) When a > bK > 0, g € (—00,0]. _
Now g(a’b)()\) < 0(A €[0,1)), then g4 4)(X) is decreasing in [0,1), and A = 0
is the maximum point.
9a0)(0) = a, G(a,p)(1) = bp.
Because a > bK and K > p, a > bp.
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S o .
0 MAX. (a, nA) =a

(2) When 0 < a < bK, X € [0,1).

If A € [0, o), 9Ea,b)(>‘) 2 0;if A € A, 1), g(a b)(/\) ; then )¢ is the
maximum point of g, () (X € [0, 1)).

Now

= (K -p) ()",

I(ap) (A %0

g(ab(

0)
)
For K > p and b(K )(LK)K{P > 0, g(a,5)(Xo) > bp.
So

= bp.

bK ap
JnaX 9oty (A) = ga,py(Ao) = bp+ ( - > (a - E)

K

= bp+ b(K — p) (3‘%)7‘_

By Lemma 13, we know the lemma is true. O

Theorem 17. When K > p, the minimal circumscribed Hermitian ellipsoid
of Yii(N,p,K) is

{ (0,2) € CVHM . @N)'F° N+ Kp+ K)¥

2
+
2N +p2+p el

2N +(p+ 1K 2
1y,
INK+ (pt )pk Al <

Proof. Because the volume of the minimal circumscribed Hermitian ellipsoid
of Y[](N,p,K) is

V(S(a,0) = a Mo Mwna,
we need consider the minimum of the following function to obtain the minimal
circumscribed Hermitian ellipsoid of Y ;(N, p, K):

T(a,b) :=a Mo~ M
(1) When 0 < a < bK, we consider the minimum of the function
T(a,b) :==a Vb~ M

with the constraint p

a —p
From the constraint, we obtain

(i) a=K(1-bp) 7 (K —p)"% bk
Then
T(a,b) = [K(1-bp) " (K ~p)"= bk]"Np~M
_ K“N(K _p)gK___(l —bp) (p=K)N —p(2N+Kp+K) = T(b).
T’(b) _ (—p)K—N(K _ (K—Kp)N (1 _ bp) (p—KI)(N—K b—p(2N+p211(<+K)—2K
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(p ~ K)Nb 2N +pK + K
X I + (1-bp) 5K
1 G=K)N-K

_N-— (K-p)N
= 2zoK"”(K~:D) = (l-bp) x

—p(2N+pK+K)—2K
- 2k

(2NbK + bKp® 4+ bpK — 2N — pK — K).
Let T'(b) = 0, then we get
1
(i) b= N+ @+ DK
(2N +p* +p)K

When 0 < b < by, T'(b) < 0, T'(b) is decreasing, and when by < b < +00,
T'(b) > 0, T(b) is increasing, so T'(b) attains the minimum at bo.
Let b= by in (i), then we get

(i) W 2) FE@2N + Kp+ K)¥
0~ 2N +p*+p ’
So
min  T(a,b) = T(ag,bp)
0<ag<bK
Yr1CS(a,b)

[(21\/') "2 (2N + pK + K)%J -
2N +p?> +p
[ 2N +pK + K }‘M
(2N +p? +pK
(N + 1% +p) 2N4p(pt1)
@N + Kp+ K) 55w :
(2) When a > bK > 0, we consider the minimum of the function

T(a,b) :=aNp~M

)N(pK—K!

= (2N KM

with the constraint a = 1.
Becausea > bK >0,0< b <
Now

2 _ 1
K~ K-

1
min T(a,b)= min T(a,b)=T (1, —) = KM,
aZbK >0 a=1,0<b< & K

Yr:1(N,p,K)CS(a,b)
Compare the minimal value of T'(a,b) in (1) and (2):
About (1),

_ Ne—K) 1opr [2N4p(e+1)]Y [ 2N+pet+1) 1M
Tloo,bo) = (2N)= K [2N—|—K(P+1)A;%V- [2N+K(p+1)}

N
M | (420 FGAD D J

= K
(1_’_1{(2;,1\-,;-1))(—1{7%7“)
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Here need we discuss the monotonicity of function f(z) = (1+ )G (2>

0).
f@)=u+xyhm(izﬁ%liﬂ).
Let
glz)=z—log(l+z) (z>0),
then ¢'(z) = 1 — zl? > 0 when z > 0. Since g(0) = 0, it follows that
9(z) >0 (z>0),ie,z>log(1+z) (z >0). So f'(z) >0 (a: > 0), i.e., f(x)
is increasing strictly in [0, +00).
With the above result, because ﬂ%\,ﬂ > ﬂ%l,

1 p(p+1 (F(i_{vi-ﬁ*_l)
(+*5)

<1,
(1 + K;;lz)(#ﬁl)_‘_l)

furthermore
T(ao,bo) < KM
Generalizing from the above proof, when K > p, a = ag and b = by,
T(a,b) attains the minimal value, and V(S(a,b)) attains the minimum, so

S(ag,bo) = {(w,z) € CNTM : qgljwl||? + bol|2||*> < 1} is the minimal circum-
scribed Hermitian ellipsoid of Y (N, p, K). O

() 0<K<p

Lemma 18. When 0 < K < p, S(a,b) is the circumscribed domain of Yir if
and only ifbp =1 and 0 < a < bp, ora=1 and a > bp > 0.

Proof. When 0 < K < p,
Jap)(N) = a(l = N F +bpA,

a p—K
oy = =L =NF +bp (A#1).

Let g, () = 0, we get Ao =1 — (2£)?~ =3

(1) When 0 < a < bK < bp, E ab ( ) = 0 (A € [0,1)), then g4 (A) is
increasing in [0, 1), moreover when A e [0,1), g(ap)(A) < bp(l —A) +bpA <
bp = g(a,p)(1), 50

A) = = bp.
/\Ig[%)i]g(ab)() Y(ap)(1) = bp

(2) When a 2 bK,0< A < 1.

When X € [0 Xols g(a,b)()\) < 0, g(ap)(X) is decreasing, when A € [Ao, 1),
g(avb)()\) 2 0, g(a,p)(A) is increasing, then g, 5)(A) attains the minimum at Ao.

So

Ae[o,rﬁ?);y{bg(“’b)()‘) = max{g(a,(0); 9(a,p) (1)} = max{a, bp}.
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When a > bp, BAX, 9(ab) (A) = 9(a,p)(0) = a.

When bK < a < bp, max, 9(a,6)(A) = 9(a,p)(1) = bp.

Generalizing from (1) and (2), when 0 < K < p, according to Lemma 13,
S(a,b) is the circumscribed domain of Y77 (N, p, K) if and only if bp = 1 when
0 < a < bp; S(a,b) is the circumscribed domain of Y;;(N,p, K) if and only if
a =1 when a > bp > 0. O

Theorem 19. When 0 < K < p, the minimal circumscribed Hermitian ellip-
soid OfYII(N,p, K) 18

{(w,Z) € CVFM - Jlw|)? + %II'ZII2 < 1} -.

Proof. According to Proposition 3, the volume of S(a,b) is
V(S(a,b)) = a Vo™ Mwn, .

Then

bp=1,0<ax1

min _ V(S(a,b)) =V (s (1, %)) = pM N u;

min V(S(@.B) = V (s (1, %)) = pMunar.

a=1,0<bg L
Sowhena=1b= 2,5 (1, %) = {(w,2) € CN*M : ||lw|[®> + Zl=(* < 1} is the
minimal circumscribed Hermitian ellipsoid of Y (N, p, K). O

Generalizing from (I), (II), (III), when 0 < K < p, S (1, %) = {(w,2) €
CN+M - Jlwll> + 1]|2]1> < 1} is the unique minimal circumscribed Hermitian
ellipsoid of Y77(N, p, K); when K > p, S(ao,bo) = {(w,z) € CN+M : qp]|w|* +
bol|2]|> < 1} (ao,bo here are the previous ones in Theorem 17) is the unique
minimal circumscribed Hermitian ellipsoid of Y7 (N, p, K).

4. Extremal mapping and extremal value of Yi;(N,p, K)

Theorem 20. When 0 < K < p, the C-extremal mapping from Yir(N,p, K)
to BN+M .
f:Yu(N,p, K) — BN+M

fil(w, 2)) = w; i=1,2,...,N
1
fuv((w?Z)) = (%)22’”‘0 u=1727"'7p ;v:1727"'7p’u<z)'

Proof. Because Yi;(N,p,K) and BVN+M are balanced holomorphic domains,
by proposition 1, V I € Hol(Y (N, p, K), BNTM) satisfies

dl(0)(Y7(N,p,K)) ¢ BNtM,
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Thus the extremal mapping f from Y77(N,p, K) to BN*tM is a solution of the
following extremal problem:

sup{| det dI(0)| : di(0) complex linear mapping, di(0)(Yr;(N,p,K))c BN+M},

According to Theorem 19, when 0 < K < p, the minimal circumscribed
Hermitian ellipsoid of Y;;(V,p, K) is

s (1, }D) - {<w,z> e VN sl + TP < 1}.

So by proposition 4, df (0) (S (1, %)) = BN+M,
While
BNTM = {(w,z) € VM - |lw|)® + ||2|1* < 1},
then the complex linear mapping from S(a,b) to BN*M is

( ' 0 )
$p= 17(M :
0 \/;ﬂ )

So ¢ is just df (0), furthermore it can be inferred that the C-extremal map-
ping f from Y;;(N,p, K) to B¥+tM is just the form in the theorem. O
Theorem 21. When K > 1, the C-extremal mapping from BN+YM to Yy is:

g: BN+M — YII(N’p)K)
g(w,2) = (w, Z).
Proof. Because Y77(N,p, K) and BN*M are balanced holomorphic domains,
according to Proposition 1, V m € Hol(BN*tM Y;;(N,p, K)) satisfies
dm(0)(BY*M) C Yir(N,p, K).

Thus the C-extremal mapping g from BY+M to Y;;(N,p, K) is a solution of
the following extremal problem:

sup{| det dm(0)| : dm(0) complex linear mapping, dm(0)(BN+™) C Yi;}.

According to Proposition 4, dg(0)(BN+M) is the maximal inscribed Hermit-
ian ellipsoid of Y77 (N, p, K).

According to Proposition 11, when K > 1, BNtM i5 the maximal inscribed
ellipsoid of Y;;(N, p, K).

Thus when K > 1, dg(0) = I'N*M) | furthermore g is just the form in the
theorem. O

Theorem 22. When 0 < K < p,

p(p+1)
3

1
Jmax(YII(N,p, K),BN+M) = (5)
When 1 < K < p,

+1
H(YII(N7P7K)7BN+M) = lezl_—)lng
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Proof. When 0 < K < p, according to Theorem 20 and the definition of C-
extremal value,
p(r1)

Jmax(Y11(N, p, K), BN*M) = [ det df (0)| = (119)

When 1 < K < p, by Theorem 21,
Jmax(BNTM Y1 1(N,p, K)) = | det dg(0)| = 1.
According to the definition of extremal distance,
p(Yir(N,p, K), BY*M) = —loglJmax (Y1 (N, p, K), BN M)
Jmax (BN M, Y11(N, p, K))]

= 1%11_) logp.

a

Theorem 23. When K > p, the C-extremal mapping from Yi;(N,p,K) to
BN+M is
f:Yu(N,p,K) — BVtM
filw,2)) = Jaow; i=1,2,...,N
Jur((w, 2)) = Vbozuw u=1,2,....p;0=12....pu<v,
where ap, by are the previous ones in Theorem 17.

Proof. The method used to prove the theorem is similar to that of Theorem
20.
Now according to Theorem 17,

df(0) = ( \/a_oI(N) 0 ) ‘

0 Vo IM )
In terms of the form of df(0), the C-extremal mapping f from Y;;(N,p, K) to
BN+M s just the one in the theorem. O

Theorem 24. When K > p,

N(K N(K—p) 2pN+Kp(p+1)
iK

(2N) (2N + pK + K)
K (2N + p + p) 2N+p4(P+1) ’
KEp(pr) QN + p? + p)2NE+Ep(p+1)
(2N2N(E-p)(2N + Kp + K)2pPN+Kp(p+1)”
Proof. By Theorem 23 and the definition of C-extremal value,
Tmax(Y1r (N, p, K), BNTM) = | det df (0)|

N p(p+1)

= ag by *
N(K—p) 2pN+Kp(p+1)
iK

@N) Y572 2N + pK + K)
K {P;— (2N+p +p) N+1;1p+1)

Jmax(nI(N7p7 K)7 BN+M)

P(P+ )

/‘(}/}I(va9 K):BN+M) IOg
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w(Yir(N,p,K), BN*M) = —log[Jmax (Y11(N,p, K), BY M)
+ Jmax (BN M, Y11 (N, p, K))]
1 KKp(p+1)(2N + p2 + p)2NK+Kp(p+1)
= 1K 8 GNNEP N + Kp + RPN TRrGHD)
0

Part IV. The extremal problems on Y;(N;m,n; K) and Yi1(N,q, K)
1. Extremal mapping and extremal value of Y;(N;m,n; K)

Proposition 25 ([8]). When K > 1, the unit hyperball BN+™" is the mazimal
inscribed ball of Yi(N;m,n; K).

Theorem 26 ([8]). When 0 < K < m, the minimal circumscribed Hermitian
ellipsoid of Yi(N;n,m; K) is
1
{(w,z) € CN+mn - |jwl|? + E||z||2 < 1}.

Theorem 27 ([8]). When K > m, the minimal circumscribed Hermitian el-
lipsoid of Y1(N;m,n; K) is

Nl_%(N—FnK)%
N +mn

N +nK

2 2

wl||® + 15.
llwll K(N mn)”Z” < }

Theorem 28 ([8]). When 0 < K < m, the C-extremal mapping from
Yi(N;m,n; K)

{(w,z) g CN+mn .

to BN+mn js.
f:Y(N;m,n; K) — BNTmn
fil(w, 2)) = w; i=1,2,...,N
1
Juo((w, 2)) = (—71;)2 Zuw u=12,....m;v=12...,n.

Theorem 29 ([8]). When K > 1, the C-extremal mapping from BNT™" o
Yi(N;m,n; K) is:

g:BNtmn Yy (N;m,n; K)
g(w,2) = (w, Z).
Theorem 30 ([8]). When 0 < K < m,
Joax(YT(N;m, n; K), BNT™) = ;= %"
When 1 < K < m,

p(Y1(N3m,m; K), BN+ = 22 log m.
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Theorem 31 ([8]). When K > m, the C-extremal mapping from
Yi(N;m,n; K)
to BN+mn gg:
f:Y(N;m,n; K) — BN+mn
fillw,2)) = Jagw; i=1,2,...,N

Juw((w, Z)) = Vbozuw u=1,2,. iv=1,2,.
where ag = 2LFNARKOR p Kj(va*ffrfm

Theorem 32 ([8]). When K > m,
N%(l—%)(N+nK)%("+%)

K" (N +mn)™ 5™’
Yi(N;m,n,K), BNty = :
l‘t( I( ym,n, )’B ) 9 og NN(l_%)(N_i_nK)m(n_'_%)

Jmax(YI(N; m,n; K): BN+mn) =

The above conclusion about the C-extremal problems on Y;(N;m, n; K) was
gotten by Su jianbing, and the proof can be seen in the reference [8].

2. Extremal mapping and extremal value of Yir7(N,q, K)

BN+‘1(‘12—12

Proposition 33. When K > 2, the unit hyperball s the mazimal

inscribed ball of Yrri(N,q,K).

Theorem 34. When 0 < K < 2[2], the minimal circumscribed Hermitian
ellipsoid of Yi11(N,q,K) is

g(g—1 1
{<w,z> e OV I 2 + L jjag < 1}

B
Theorem 35. When K > 2[4], the minimal circumscribed Hermitian ellipsoid
Of Y[][(N, q, K) 18

K-2(4] 2141
(4ZIN) T [BIN+Kq(g-1]F

2[2](2N +4(¢ - 1))
4[N + Kq(g- 1)

[312KN + Kq(g - 1))

{(w, 2) € CN+ %7,

[lwif?

llzll* < 1}.

alg—1)
p

Theorem 36. When K > 2, the C-extremal mapping from BN+
Y[[](N,(],K) is

to

g: BN+Q(q2—1) —)Y[II(N,Q,K)

g(w,2) = (w, )V +5),
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Theorem 37. When 0 < K < 2[%], the C-extremal mapping from
YIII(N7 q, K)
to BNT5 g

h: Yii(N,qK) — BN+2%Y

) 0
H = 0 L]I(@)

where

S

Theorem 38. When 0 < K < 2[%],

a(g—1)
a(q—1) 1 4
Jnax(Y1171(N,q, K),BNT7 2 ) = (m
2
When 1 < K < 2[%],
Nesezn) o glg—-1) . g
u (Yirr(V,q, K), BV ) = T Ziog (L)
Theorem 39. When K > 2[2], the C-extremal mapping from Yir1(N,q, K) to
BN+
h: Yi(N,q,K) — BN+%5"
h(w,Z2) = (w,Z)H,
where
\/%I(N) 0
H = a(e—1) )
0 VoI (F)
and
14 29)

o _ W) 4N + Ka(g— )]
T )

2[2](2N +q(g -1
4[4IN + Kq(qg—1)
[2](2KN + Kq(g -1
Theorem 40. When K > 2(4],

by =

)

(g=1)
3

Jmax(YIII(Naan)vBN+ )
(2N) 7T (2 4 hafa ) SRR e

q(q 1)

2N +4q(g—1) ’
4

K75 (2N +q(¢—-1))
w(Yrrr(N,q,K), BN+‘qu)

KKalg— D(2N + ¢(q 1))2NK+Kq(q—1)
E (2N)2N(K 2[2 )(2N+ Mulyl[g N+Kq(q—1)9Kq(g~ 1)’
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To sum up, we discuss the C-extremal problems on
YI(N;mvn;K)aYII(Nava)

and Yj;r(N,q,K) in this paper. Because the method to deal with the C-
extremal problem on Y;v (NV;n; K) is different from the above discussion, the
conclusions about the C-extremal mappings between Y7y (N;n; K) and B™ will
be given in the succeeding paper.
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