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Bayesian Hypothesis Testing for Homogeneity of the
Shape Parameters in the Gamma Populations

Sang Gil Kang?) - Dal Ho Kim2? - Woo Dong Lee3)

Abstract

In this paper, we consider the hypothesis testing for the homogeneity of
the shape parameters in the gamma distributions. The noninformative
priors such as Jeffreys’ prior or reference prior are usually improper
which yields a calibration problem that makes the Bayes factor to be
defined up to a multiplicative constant. So we propose the objective
Bayesian testing procedure for the homogeneity of the shape parameters
based on the fractional Bayes factor and the intrinsic Bayes factor under
the reference prior. Simulation study and a real data example are
provided.

Keywords : Fractional Bayes Factor, Intrinsic Bayes Factor, Reference
Prior, Shape Parameter

1. Introduction

In Bayesian testing problem, the Bayes factor under proper priors or informative
priors have been very successful. However, limited information and time
constraints often require the use of noninformative priors. Since noninformative
priors such as Jeffreys’ prior or reference prior (Berger and Bernardo, 1989, 1992)
are typically improper so that such priors are only defined up to arbitrary
constants which affects the values of Bayes factors. Spiegelhalter and Smith
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(1982), O'Hagan (1995) and Berger and Pericchi (1996) have made efforts to
compensate for that arbitrariness.

Spiegelhalter and Smith (1982) used the device of imaginary training samples in
the context of linear model comparisons to choose the arbitrary constants. But the
choice of imaginary training sample depends on the models under comparison, and
so, there is no guarantee that the Bayes factor of Spiegelhalter and Smith (1932)
is coherent for multiple model comparisons. Berger and Pericchi (1996) introduced
the intrinsic Bayes factor using a data-splitting idea, which would eliminate the
arbitrariness of improper priors. O'Hagan (1995) proposed the fractional Bayes
factor. For removing the arbitrariness he used a portion of the likelihood with a
so—called the fraction b. These approaches have shown to be quite useful in many
statistical areas (Kang, Kim and Lee, 2005, 2006).

Consider k independent gamma populations with the shape parameter «; and the
scale parameter B;i=1,---,k. Let X;;j=1,---,n;, denote observations from the t¢th

gamma population. Then the gamma distribution of X;; is given by

ot z
f(xij): “—iexp{_ ij
f

7.=17"’ak>-=1,’", 29 (1)
o8 8 }’ 7 "

where «; >0 and G; > 0. As noted by various authors (Lawless, 1982; Keating et.

al., 1990, etc), the gamma distribution is widely used in reliability and survival
analysis. In particular, the shape parameter is of special interest because the shape
parameter less than 1, equal to 1 and greater than 1 correspond to a decreasing
failure rate, a constant failure rate and an increasing failure rate, respectively. The
testing problem of the homogeneity of the shape parameters can be motivated
within competing risks theory (see Wong and Wu, 1998).

Wong and Wu (1998) compared the accuracy of tail probabilities obtained by
various approximate inference procedures for the common shape parameter of the
gamma distributions. They concluded that although the first order methods based
on the maximum likelihood estimator and signed square root of the likelihood ratio
statistic are the most common approximations used by applied statisticians, they
sometimes give unsatisfactory or even misleading approximations, and all the third
order methods give very similar results but the approximation using the exact
conditional log likelihood function seems to be the best. However there is a little
work in this problem from the viewpoint of objective Bayesian framework.

This paper focuses on Bayesian testing for the homogeneity of the shape
parameters in the gamma distributions. For dealing this problem, we use the
fractional Bayes factor (O'Hagan, 1995) and the intrinsic Bayes factor (Berger and
Pericchi, 1996, 1998).

The outline of the remaining sections is as follows. In Section 2, we introduce
the Bayesian hypothesis testing based on the Bayes factor. In Section 3, Using the
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reference prior, we provide the Bayesian testing procedure based on the fractional
Bayes factor and intrinsic Bayes factor for testing the homogeneity of the shape
parameters. In Section 4, simulation study and a real example are given.

2. Intrinsic and Fractional Bayes Factors

Hypotheses H,, H,, -, H, are under consideration, with the data z= (2,25,
z,) having probability density function f;(z | ;) under model H;. The parameter
vectors §; are unknown. Let m;(6;) be the prior distributions of model H;, and let
p; be the prior probabilities of model H,,i=1,2,-:-,¢. Then the posterior probability
that the model H; is true is

-1
P(mlx)=L§%-B,-,-) , (@)
i=141 .

where Bj; is the Bayes factor of model #; to model A; defined by

ffj(x | 6,)m;(0,)d0; o (2)
B;= = . (3)
/fi(z 1 6,)m;(9,)d6; mi(z)

The Bj; interpreted as the comparative support of the data for the model j to :.
The computation of Bj; needs specification of the prior distribution ; (6;) and
7rj(0j). Usually, one can use the noninformative prior such as uniform prior,

. .. . . . N
Jeffreys’ prior or reference prior in Bayesian analysis. Denote it as w; . The use

of noninformative priors W{V (-) in (3) causes the B;; to contain unspecified
constants. To solve this problem, Berger and Pericchi (1996) proposed the intrinsic
Bayes factor and O’'Hagan (1995) proposed the fractional Bayes factor.

One solution to this indeterminacy problem is to use part of the data as a
training sample. Let z(l) denote the part of the data to be so used and let z(—1)
be the remainder of the data, such that

0<mi(z(l)) < 00,i=1,-,q (4)

In view (4), the posteriors 7~ (8; | z(1)) are well defined. Now, consider the Bayes
factor Bji(l), treating the remainder of data z(—1) as the likelihood function with
76, | (1)) being as the prior:
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/ Fla(=1) 18,206, | =)o,

= = By - B}(z(1)), (5)
f Fa(=1) 1 6,200, 1 2())ds;
where
m; (z) m? (z(1))
N__ N, — N — £
B = Bi@) = Uy @4 BEWO)= vy

are the Bayes factors that would be obtained for the full data £ and training
samples z(l), respectively.

Berger and Pericchi (1996) proposed the use of a minimal training sample to
compute Bi;y(z(l)). Then, an average over all the possible minimal training samples

contained in the sample is computed. Thus the Arithmetic Intrinsic Bayes factor
(AIBF) of H; to H; is

L
By'=5Y - 7350, ®)

where L is the number of all possible minimal training samples. Also the Median
Intrinsic Bayes factor (MIBF) by Berger and Pericchi (1998) of H; to H; is

BM= BY . ME|BY=(), o

where ME indicates the median. So we can also calculate the posterior probability
of H; using (2), where Bj; is replaced by B]-’;-” and Bj},!” from (6) and (7).

The fractional Bayes factor (O’Hagan, 1995) is based on a similar intuition to
that behind the intrinsic Bayes factor but, instead of using part of the data to
turn noninformative priors into proper priors, it uses a fraction, b, of each
likelihood function, L(6;)= f;(x | #;), with the remaining 1—b fraction of the

likelihood used for model discrimination. Then the fractional Bayes factor (FBF) of
model H; versus H; is

, JEeInr6a, _ g, @
/ LY9 )0 )ae, T mi(z)

(8)

O'Hagan (1995) proposed three ways for the choice of the fraction b. One
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common choice of b is b=m/n, where m is the size of the minimal training
samples, assuming that this number is uniquely defined. (see O'Hagan (1995, 1997)
and the discussion by Berger and Mortera in O'Hagan (1995)).

The IBF approaches for the hypothesis testing are the most generally applicable
approach, but the IBF can be computationally intensive because of the minimal
training samples. The FBF is easier to compute than the IBF. The FBF is
typically available even for very small sample sizes, but their utility in such
situations is tempered by the fact that the answer will typically then highly
sensitive to the choice of the fraction b and no reasonable automatic choices for
this fraction seem possible in such situation. The detailed advantages and
disadvantages of IBF and FBF approaches are given in Berger and Pericchi (1996,
1998) and O’'Hagan (1997).

3. Bayesian Testing Procedures

The joint probability density function of X by (1) is

T *&, 9
fa)= H;lr[ll“a)ﬁa p{ 51'} ©

where z= (wu,'-',mlnlr'-,l‘kp'--,:zknk), ;>0 and B;>0. We want to test the
hypothesis

H :oy=-=q, vs. Hy:a, = q (10)

Our interest is to develop the Bayesian testing procedure based on the fractional
Bayes factor and the intrinsic Bayes factor for the hypothesis (10). Let
;= ;3,1 =1,---,k. With this parameterization, the joint probability density
function from the model (9) is given by

k

f(x)=[H . (5’—) HHH% }p{—ﬁ?—“—f—] an

i=1 Ma,)" \ M i=1j=1 i=1 M

where z;. = Zmij,iz 1
i=1
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3.1 Bayesian Testing Procedure based on the Fractional Bayes Factor

Under the hypothesis #H,, the reference prior for a(=a =...=¢q;) and
([Ll,"',/.tk) is

V(o o) W (@) —a” M2t (12)

where ' (- ) is the trigamma function. This reference prior is derived by Kang,
Kim and Lee (2007). They showed that the posterior under the above reference
prior is proper if n; +---+mn,—k—2> 0. And the likelihood function under H, is

kEoax,.

Lo pgse oy, | ) = L [fl(u) HHH”Ea 1}3"1’{"2

I'(a)" |i=1 i=1=1 i=1 M

L

where n=n, +---+n;. Then from the likelihood (13) and the reference prior (12),
the element of FBF under H, is given by

mi@)= [ [ e [T e | @)l g - dpde
0 0 0

HF nba)

— —nbcvzi—1
f b )nb

For the hypothesis H,, the reference prior for (Qgs Qg pigs- - s tye) S

n, b(a 1)

T2

i=1j=1 x,-.

[¢ (a 1]1/2

i ,
W{V(al""’akvul""’ﬂk)oc H["r/"(ai)_ai_l]lmﬂ: .
i=1

This reference prior is derived by Liseo (1993) and the posterior is proper if
n; > 2,i=1,---,k (Garvan and Ghosh, 1999). The likelihood function under #, is

=1 M

L(al""’akaﬂla Tty Mg | -’L'

) H; i=15=1

Thus the element of FBF under H, gives as follows.

o0 o o« o0
Y S o A o Y
0 0 0 0
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X1 oy Qo g =+ i )dpy - dpdon -+ day,

k wph n‘baT(nibai) il xb(a Y _
= H[/ b - ['p (o) — o 1]1/2d0‘i :
i=il\Y o (o)™ =1 xl
Therefore the element B{Y of the FBF is given by
S, (z)
N _ 2
B21 - Sl (x) ’ (14)
where
k
- HF(nia) b g
Sl(x):f =1 HH% [wl(a)_a_lllhda
o ') l|izhj=izi.
and

£ I'na;) 1172
Sz(z)_g(fo Ia)" L=1x }W )=l ]

And the ratio of marginal densities with fraction b is

m; (z,y) S (z,y;b)
mi(z,y)  Sa(zyib)’

where
- Hf(nba) n L bo
S’l(x;b)=f0 b~ ”“’“}( T [an ] (¥ (@)= a '] da
t=1j=1
and
k nba‘l"(nba) Za or! 1/2 J
52(z,b)—i=1—_[1(f0 o [11;{1 i ][w( 1" doy, .

Thus the FBF of H, versus H, is given by
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r_ Sl@)  S(xb)

Ba= 5@ S (15)

Note that the calculation of the FBF of H, versus f; requires one dimensional
integration.

3.2 Bayesian Testing Procedure based on the Intrinsic Bayes Factor

The element BjY, (14), of the intrinsic Bayes factor is computed in the FBF. So
using minimal training sample, we only calculate the marginal densities under H,;
and H,, respectively. The marginal density of (lel,leQ, lja""’Xkll’Xkl,’Xkla) is
finite for all 1< j, <j,<j3 <ng,-,1<1], <l<ly <n. under each hypothesis
(Garvan and Ghosh, 1999; Kim, Kang and Lee, 2007). Thus we conclude that any
training sample of size 3k is a minimal training sample.

The marginal density m{v(xlj,’xlj,’xlja""’Ikl,’zkl,’xkls) under H, is given by

N
m (‘L'u,’xu,’%j,""’xkz,’xktz’zkl,)

0 oo =]
- /0 fo \/0 f(zljx’mljz’xljs’“"xklx’xklz’zkls b gy 'u'k’a)

Xy (e poe)dpy - dpdor

da,

o _k 1Tk 3 3 a
= [ TlrGalre) 4y @-a"1)? IIH(wij/_:Elw,-j)

i=1 i=1j=1

where 1< j, <jy<j3<mng 1<l <ly<l3<n,. And the marginal density

N . .
my (mljl’zljz’xlj:,"”’xkll’zkli’xkl,) under H2 is given by

v ;
my (1'1;'175”1]',’371]',""’zul’zu;wkl,)

o o] 00 oo
- /0 /0 »/0 f(xljl’zljz’xlja’“.’xklx’zklz’xkla | Hroee Nkval"">ak)

Xﬂ'{v(l‘p'” Mg @y )dpy -+ dpyday -+ day,
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- ﬁ( fo"" e )Z v (ai>—azll%[fl(~"’ﬁ/ ix)]da}

=1\ =1

= T2 (Il'l] 7351]2)3;1]’ . ’xkll’wklz’xkls)'

Therefore the AIBF of H, versus H, is given by

(16)

BAI: 52($) . _1_ Tl($1j17$1j211'1j35'"7xk11717kl2,.'1?k13) .
a Sl(a:) L

dudmds bilply 12 (xljl"”ljz’“’w'""”kll"”klz’zkla)

where L= Hn (n,—1)(n;—2)}/6*. And the MIBF of H, versus #, is given by
i=1

. 5@ [ T3 (5%, B1p" " Baty Taty Tt) ] a7

21 T *
5 (z) Tz(1313'1,-'1315271:1]'31'"?xkll’zkl27zkl,)

Note that the calculations of the AIBF and the MIBF of H, versus H, require

one dimensional integration. In Section 4, we investigate our hypothesis testing
procedures.

4. Numerical Studies

In order to assess the Bayesian testing procedures, we evaluate the posterior
probability for several configurations (@ppi), ny i=1,---,k and k. In particular, for
fixed (o p),i=1,--,k, we take 200 random samples in each population. In our
simulation, we examine the cases when the k equals 2 and 3.

The posterior probabilities of H; being true are computed assuming equal prior
probabilities. Table 1 and 2 show the results of the averages and the standard
deviations in parentheses of posterior probabilities. In computing the FBF, we use
the fraction b= 3k/n where 3k is the size of the minimal training samples and
n= Zfz ,n;. From the results of the Table 1 and 2, the FBF, the AIBF and the
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Table 1: The averages and the standard deviations in parentheses of

posterior probabilities

apay B>y 7937 PAM, | z) PY(M, | z) P, | z)
05,05 1,1 55 0.513 (0.097) 0550 (0.129) 0.537 (0.111)
5,10 0.585 (0.116) 0.607 (0.125) 0.589 (0.112)

10,10 0.610 (0.091) 0.679 (0.104) 0.659 (0.102)

10,15 0.624 (0.119) 0.681 (0.126) 0.662 (0.122)

1,5 55 0.518 (0.099) 0553 (0.130) 0.539 (0.109)

5,10 0.579 (0.114) 0.598 (0.127) 0581 (0.118)

10,10 0.598 (0.118) 0.665 (0.134) 0.646 (0.129)

10,15 0.635 (0.110) 0.691 (0.119) 0.671 (0.116)

0.1,10 55 0.531 (0.068) 0.569 (0.095) 0.554 (0.081)

5,10 0.569 (0.132) 0.587 (0.144) 0.570 (0.130)

10,10 0.598 (0.116) 0.664 (0.131) 0.644 (0.127)

10,15 0.619 (0.134) 0.674 (0.145) 0.655 (0.142)

0515 1,1 55 0.454 (0.119) 0.466 (0.156) 0.470 (0.129)
5,10 0.452 (0.189) 0425 (0.221) 0.422 (0.207)

10,10 0.345 (0.205) 0.378 (0.235) 0.375 (0.224)

10,15 0.305 (0.246) 0.314 (0.270) 0.308 (0.260)

1,6 55 0.430 (0.140) 0.437 (0.180) 0.442 (0.152)

5,10 0.437 (0.197) 0.408 (0.231) 0.409 (0.216)

10,10 0.362 (0.211) 0.395 (0.241) 0.390 (0.230)

10,15 0.309 (0.230) 0.319 (0.254) 0.314 (0.245)

0.1,10 55 0.446 (0.133) 0.456 (0.174) 0.459 (0.146)

5,10 0.439 (0.196) 0.408 (0.224) 0.407 (0.209)

10,10 0.367 (0.205) 0.401 (0.235) 0.396 (0.222)

10,15 0.336 (0.233) 0.348 (0.260) 0.342 (0.249)

1,1 1,1 55 0.530 (0.075) 0.568 (0.105) 0.553 (0.090)
5,10 0.586 (0.107) 0.604 (0.117) 0.585 (0.107)

10,10 0591 (0.124) 0.655 (0.141) 0.637 (0.136)

10,15 0.616 (0.133) 0.672 (0.143) 0.653 (0.140)

15 55 0.525 (0.083) 0559 (0.112) 0.543 (0.095)

5,10 0575 (0.130) 0592 (0.145) 0.576 (0.134)

10,10 0.587 (0.120) 0.649 (0.137) 0.631 (0.132)

10,15 0.619 (0.131) 0.676 (0.143) 0.657 (0.139)

0.1,10 55 0.534 (0.068) 0.576 (0.097) 0.560 (0.081)

5,10 0.589 (0.111) 0.612 (0.122) 0.595 (0.112)

10,10 0592 (0.129) 0.656 (0.146) 0.638 (0.140)

10,15 0.630 (0.120) 0.684 (0.128) 0.664 (0.125)

1,3 1,1 55 0.473 (0.120) 0.489 (0.155) 0.487 (0.134)
5,10 0.506 (0.177) 0.486 (0.207) 0.479 (0.193)

10,10 0.367 (0.225) 0.397 (0.254) 0.390 (0.242)

10,15 0.335 (0.230) 0.343 (0.253) 0.337 (0.244)

15 55 0456 (0.133) 0.464 (0.174) 0.466 (0.145)

5,10 0.446 (0.196) 0.415 (0.225) 0.413 (0.211)

10,10 0.378 (0.211) 0.409 (0.239) 0.403 (0.228)

10,15 0.350 (0.244) 0.359 (0.268) 0.351 (0:258)

0.1,10 55 0.453 (0.135) 0.462 (0.174) 0.465 (0.148)

5,10 0.469 (0.194) 0.441 (0.222) 0.436 (0.208)

10,10 0.371 (0.213) 0.402 (0.241) 0.397 (0.229)

10,15 0.349 (0.235) 0.358 (0.257) 0.350 (0.248)
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Table 2: The averages and the standard deviations in parentheses of
posterior probabilities

Oty Olgy Oty Frys Hoy fhg Ty g1l Pl(f"fl | IB) PAI(M | z) PM(M | z)
05,0505 11,1 55,5 0.537 (0.140) 0.609 (0.178) 0.627(0.161)
55,7 0.579 (0.127) 0.649 (0.152) 0.665(0.133)

5,7,10 0.629 (0.148) 0.695 (0.156) 0.714(0.141)

Ll5 555 0.543 (0.134) 0616 (0.171) 0.634(0.152)

- 55,7 0.567 (0.147) 0.641 (0.176) 0.658(0.156)

57,10 0.617 (0.160) 0.680 (0.178) 0.698(0.162)

0.1,1,10 555 0.543 (0.122) 0.613 (0.157) 0.629(0.138)

55,7 0.563 (0.150) 0.631 (0.179) 0.649(0.161)

5,710 0.635 (0.152) 0.700 (0.159) 0.716(0.140)

050515 1,11 55,5 0.439 (0.159) 0.484 (0.202) 0.519(0.183)
55,7 0436 (0.184) 0.451 (0.237) 0.494(0.224)

57,10 0.425 (0.210) 0.421 (0.249) 0.457(0.240)

1,15 55,5 0.444 (0.155) 0.490 (0.201) 0.530(0.180)

55,7 0.429 (0.182) 0.441 (0.235) 0.484(0.219)

5,710 0.456 (0.219) 0.457 (0.257) 0.489(0.250)

0.1,1,10 555 0.459 (0.155) 0.504 (0.202) 0.541(0.175)

55,7 0.442 (0.170) 0.462 (0.221) 0.509(0.212)

5,7,10 0.432 (0.225) 0.427 (0.265) 0.460(0.258)

1,1,1 1,11 555 0.552 (0.116) 0.621 (0.152) 0.635(0.136)
55,7 0.581 (0.131) 0.660 (0.157) 0.677(0.140)

57,10 0.629 (0.146) 0.695 (0.158) 0.711(0.140)

1,15 55,5 0.550 (0.109) 0.618 (0.143) 0.633(0.128)

55,7 0.576 (0.123) 0.651 (0.158) 0.670(0.141)

5,7,10 0.624 (0.171) 0.689 (0.184) 0.705(0.166)

0.1,1,10 555 0548 (0.110) 0.623 (0.142) 0636(0.130)

55,7 0.588 (0.124) 0.665 (0.150) 0.683(0.133)

57,10 0.618 (0.162) 0.679 (0.177) 0.697(0.163)

1,1,3 L1l 555 0.456 (0.152) 0.500 (0.195) 0.531(0.173)
55,7 0.470 (0.167) 0.487 (0.215) 0.516(0.197)

5,7,10 0.466 (0.235) 0.470 (0.275) 0.499(0.266)

1,15 55,5 0.474 (0.154) 0.520 (0.199) 0.552(0.177)

55,7 0.445 (0.180) 0.460 (0.233) 0.497(0.220)

5,7,10 0.479 (0.207) 0.481 (0.242) 0.511(0.232)

0.1,1,10 55,5 0.473 (0.154) 0.519 (0.199) 0.548(0.177)

55,7 0.472 (0.181) 0.492 (0.225) 0.521(0.212)

5,7,10 0.445 (0.220) 0.445 (0.259) 0.475(0.249)

333 111 555 0.554 (0.121) 0.599 (0.166) 0.616 (0.143)
55,7 0.565 (0.146) 0611 (0.186) 0.628 (0.169)

57,10 0.642 (0.154) 0.683 (0.176) 0.694 (0.164)

1,15 55,5 0.554 (0.108) 0.605 (0.148) 0.623 (0.135)

55,7 0.584 (0.119) 0.629 (0.153) 0.646 (0.136)

57,10 0.633 (0.157) 0.674 (0.178) 0.689 (0.165)

0.1,1,10 55,5 0.549 (0.127) 0.597 (0.171) 0.614 (0.151)

55,7 0.575 (0.134) 0.628 (0.168) 0.642 (0.156)

57,10 0.607 (0.173) 0.650 (0.187) 0.666 (0.175)

05,1,3 1,11 55,5 0.357 (0.179) 0.374 (0.227) 0.422 (0.207)
55,7 0.329 (0.199) 0.316 (0.239) 0.357 (0.232)

5,7,10 0.289 (0.229) 0.273 (0.256) 0.307 (0.257)

1,15 555 0.375 (0.168) 0.400 (0.212) 0.447 (0.192)

55,7 0.348 (0.198) 0.341 (0.242) 0.384 (0.236)

57,10 0.312 (0.230) 0.296 (0.258) 0.330 (0.259)

0.1,1,10 55,5 0.369 (0.173) 0.392 (0.221) 0.440 (0.204)

55,7 0.333 (0.182) 0.324 (0.227) 0.373 (0.223)

5,7,10 0.320 (0.229) 0.300 (0.256) 0.337 (0.253)
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MIBF give fairly reasonable answers for all configurations, (a;u;),i=1,---,k. Also
all of Bayes factors give a similar behavior for all sample sizes, but the MIBF
favors the hypothesis 4, than the FBF and the AIBF for the case (o a9, a3)
=(0.5,0.5,1.5) and (1,1,3) in small sample size.

Example. This example is given as Example T with the Proschan data in Cox
and Snell (1981), and Wong and Wu (1998) obtained 90%, 95% and 99%
confidence intervals of the common shape parameter based on the third order
approximation methods. The confidence intervals by the third order methods are
almost indistinguishable and the 90% confidence interval by the approximation
method using the exact conditional log-likelihood function is (0.829, 1.114). We
select two data sets (aircraft 1 and 6) from Example T in Cox and Snell (1981)
for our illustration. For aircraft 1 and 6, the maximum likelihood estimates of the
mean and the shape parameter are 95.7 and 0.97, and 76.8 and 1.13, respectively.

The values of the Bayes factor and the posterior probability of H, versus H;
are given Table 3. We assume that the prior probabilities are equal. From the
results of Table 3, the values of the FBF, the AIBF and the MIBF give the
evidence of H, and coincide with the frequentist result (Wong and Wu, 1998).

Table 3 : The Bayes Factors and Posterior Probabilities
BFf BFM BFM | PAH|z) PYH\z) P"H | 2)
0306 0211 0234 0.766 0.826 0.810

5. Concluding Remark -

In gamma populations, we developed the objective Bayesian testing procedures
based on the fractional Bayes factor and intrinsic Bayes factor for testing the
homogeneity of the shape parameters under the reference prior. From our
numerical results, the developed testing procedures give fairly reasonable answers
for all parameter configurations. In practical application with moderate sample size
and population number, we recommend to use the FBF because of computing
marginal densities based on minimal training sample in AIBF and MIBF need
much time. : :
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