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Permutation tests for the multivariate datal)
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Abstract

In this paper, we consider the permutation tests for the multivariate
data under the two-sample problem setting. We review some testing
procedures, which are parametric and nonparametric and compare them
with the permutation ones. Then we consider to try to apply the
permutation tests to the multivariate data having the continuous and
discrete components together by choosing some suitable combining
function through the partial testing. Finally we discuss more aspects for
the permutation tests as concluding remarks.
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1. Introduction

Suppose that we have two independent d-variate samples X;...X, and Y. Y,
whose distribution functions F and G, respectively. Then for testing

H,:F= G versus H,:F= G, (1.1

one may carry out the F-test based on the Hotelling’s 77 statistic or Mahalanobis
distance with the normality assumption. We note that both the statistics
Hotelling’s 7% and Mahalanobis distance take the quadratic forms. When it is
difficult to assume the normality but continuous, it is customary to adopt a
nonparametric testing procedure. For this case, there are two kinds of test
statistics. One is some metric type of statistics such as the nearest neighbors, the
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other, the quadratic form of statistics which consist of the marginal univariate
nonparametric statistics. Then the former uses the standard normal distribution as
its reference one for the critical value or p-value while the latter does the
chi-square distribution with d degrees of freedom. The reason for taking quadratic
form even in nonparametric approach, is nothing but to use the chi-square
distribution. When H,:F=G is rejected, it might be natural to ask which
component or components has or have the responsibility to be arrived at such
conclusion as much as the multiple comparisons for the one-way anova case.
Then we note that the forementioned testing procedures which are parametric or
nonparametric, can not provide the answer directly. One way out from this
quagmire might be the adoption of the partial testing or marginal testing
approach(cf. Pesarin, 2001). The partial testing procedure can be proceeded as
follows. First, one may take test for each component for the sub- hypothesis then
cook them up together for the global hypothesis using suitable combining function.
This approach requires computer-intensive computation process since the
distribution of the combined statistic for the global hypothesis can be hardly
derived to obtain the corresponding p-value or critical value for any given
significance level. Therefore re-sampling methods have become important
methodology for this problem. Especially, for this setting, the permutation principle
would be desirable since under H,:F=G, the data have the exchangeability
property. The permutation principle has a long history since it has been proposed
by Fisher(1935). However its practical application to the real problem has been
postponed until recently because of its excessive computational burden. Except the
computational aspect, the tests relied on the permutation principle enjoy many
positive properties such as exactness(cf. Good, 2000), which will be discussed in
later chapter.

In this paper, we review some well-known test procedure based on the
permutation principle for the multivariate data and show several combining
functions with an example. Finally we discuss some interesting features as
concluding remarks.

2. Permutation tests
The main issue in this section is to review various testing procedures based on
two independent samples X,...,X,, and Y;..,Y, of d-variate observations with d
-variate location parameter 6y and 8, respectively. Then for the following
problem,

Hy:0,=0, versus H :0x=0y 2.1

under the normality assumption with common but unknown covariance matrix X
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for X and Y, one may carry out a test based on the following Mahalanobis
distance D*

D’=(X-NTS;(X-Y) (22)

where (+)7 means the transpose of a matrix or vector and
1 p—
S=w5 E(-& X)(x-%)" +E( -(n-7)7,

an unbiased estimate of ¥ with N=m+n. Then it is well-known that under
Hy:05=0y

H= %L)_DZ ~ Fyyg-1,

where F;, means the F-distribution with d and k degrees of freedoms. We note
that 6, and 8, are the mean vectors of X and Y, respectively in this case. When
it is difficult to assume the normality even though the continuity is certain, one
can apply a nonparametric test based on ranks. In this way, we may consider the
componentwise approach, which is extensively dealt with by Puri and Sen(1971).
For this purpose, let ¢,(R) be a test statistic, which is a function of d-variate
rank matrix R for the ith component from the combined sample. Also let E(¢;)
and W(¢) be the expectation and covariance matrix for ¢;(R) and (¢ (R),...44(R)"
under H,:0,=80,, respectively. We note that in this case, 6y and 6, may be
median vectors of X and Y, respectively. Then the testing statistic for testing
Hy:04=0y is of the form by assuming that W¢) is full-rank,

Q= (6, (R) ~ E($y);....84(R) — B(¢,)) )" '(¢,(R) —E(,¢>1),...,¢d(1’?) ~E($))7.

Then it is well known that the limiting distribution of @ is a chi-square with d
degrees of freedom.

The data in Table 1, are from the geological problem(cf. Mardia et al, 1979).
The first components(X, and Y;) represent the distances between the shoulders of
the larger left value and the second components(X, and Y;) represent the lengths
of specimens of Bairda oklahomaensis from two geological levels(Levels 1 and 2).
For the data in Table 1, H=7.528 and the corresponding p-value becomes 0.0050
from the F-distribution with 2 and 16 degrees of freedom. Now for the
nonparametric procedure, we provide the corresponding ranks in Table 2. We used
the mid-ranks for the tied observatlons in both components. If one uses the
Wilcoxon statistic for ¢; for each i, i=1,2, one may obtain @=10.1376 with 0.0063
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as its p-value from the chi-square distribution with 2 degrees of freedom.

<Table 1> Geological data

Level 1 Level 2
X X, ) Y,

631 1167 632 1257
606 1222 631 1227
682 1278 631 1237
480 1045 707 1368
606 1151 631 1227
556 1172 632 1262
429 970 707 1313
454 1166 656 1283

682 1298

656 1283

672 1278

<Table 2> Ranks for geological data

Level 1 Level 2

X X, Y Y,
85 5 155 11
55 8 85 8
135 145 85 10
3 2 185 13
55 3 85 8
4 6 135 12
1 1 185 19

2 4 115 165
155 18

115 165

13 145

From the example, we note that both the test procedures rely completely on the
normal distribution theory in any sense even the nonparametric case to obtain the
null distribution for the test statistics. Here is one way out for this normal theory
even when the data are from the population with normal distribution. This can be
done by applying the permutation principle. Since D* and H produce the same
result, one may use D? instead of H for the computational consideration. The
permutation tests can be performed in the following order for the two-sample
problem setting:

(a) Set COUNT,; =0(and COUNT,=0).
(b) Combine two samples X;,...X,, and ¥,,..,Y, into one sample.
(c) Re-sample X;,...,X,, and Y,..,Y, without replacement.

(d) From X;,...X, and Y;,.Y,, compute D™ and Q@ and compare them with D?
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and @, respectively.
(e) If D'?>D*and Q > @) then
COUNT,; « COUNT;+1(and COUNT,«— COUNT,+1)
(f) Repeat (c)-(e) B times. Usually the number B should be large enough.
(g) Obtain the permutational p-value by COUNT,,/Bland COUNTy/ B).

For the data in Table 1 and the corresponding ranks in Table 2, we carried out
the permutation tests based on both the statistics D’ and @ and obtained 0.00094
and 000234 as their respective p-values by using SAS/IML on PC with 100000
repetition. As a matter of fact, the procedure based on @ is a permutation test
and the derivation of the limiting distribution has been relied on the permutation
principle. However it has not been possible to use the permutational distribution
even for any reasonable sample sizes until very recently since the procedure
heavily depend upon the computer ability.

3. Various nonparametric statistics for the permutation tests

However there may be some other situations where the quadratic form of the
test statistics is not appropriate. Suppose that a laboratory has developed a
medicine which may have effects on two symptoms simultaneously. One may
draw a conclusion that this medicine is acceptable if it is effective for any one of
two symptoms or for both. In this problem, the null and alternative hypotheses
can be expressed as follows using the notation introduced in section 2:

Hy:0, <0, versus H,: at least one component is not true. 3.1

This is the so-called multivariate one-sided test problem(cf. Wei and Knuiman,
1987). Also Bhattacharyya and Johnson(1970) and Johnson and Mehrotra(1972)
proposed nonparametric tests based on some metric under the name of the ordered
alternatives for the bivariate data. All the mentioned testing procedures for (3.1)
use the standard normal distribution as their limiting distributions. Therefore it is
still difficult to distinguish which component has the responsibility for the rejection
of the null hypothesis directly. We note that they also do not apply the
permutation principle for the null distribution. There is another type of statistics
for testing (3.1), which is called as the maximal type of statistics. Boyett and

Shuster(1977) considered a nonparametric test procedure based on the following
statistics:

MT==ma.x{T1,...,Td},

where for each ¢, i=1,..,d
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Y- %,
T, = T
V 5y
where S,'fi is the pooled sample variance of the ith component. Also Park et
al.(2001) considered a nonparamertic test procedure based on the following

statistics
MR= maX{NS'],..nNSd}y

where for each i, i=1,...d, NS,={¢;(R)—E(¢;)}/+/V(¢;) by varying the type of ¢
with component by component fashion, where W(¢;) is the null variance of ¢;.
Park et al.(2001) allowed that the score functions ¢;'s can be varied component by
component. For example, one component may be Wilcoxon rank sum statistic and
the other, median type of statistic for the bivariate case. Then one can extend
these ideas further in the following way for the testing problem (1.1). For this
purpose, for each i, i=1,....d, let F, and G, be the ith marginal distribution of X
and Y, respectively. Also let Hy,:F,=G, and H,:F;= G. Then it is interesting to
observe that

d d
Hy= QE,, and H = L;JlI{h (3.2)

We note that |7}| or |NS] is an appropriate statistic for testing H,:F;=G,. Also we
note that the maximal function is an appropriate function for the intersection.
Therefore in this vein, one may use the following maximal statistic

AMT=max{|T}}....|TJ} or AMR=max{|NS,....|NSj} (3.3)

for testing (1.1). We note that test procedures based on (3.3) should be appropriate
for the continuous components only. However some data may contain the
continuous and discrete components together. In this case, we have to consider
some different approach. This may be solved by introducing the marginal or
partial testing approach. In this way, Pesarin(2001) considered several test
procedures based on partial tests using various combining functions. He used the
p-value approach instead of directly using the test statistics directly. For this, let
X\ be the corresponding p-value for each Hy based on some appropriate statistic
for testing H,;:F,=G, for the continuous or discrete data. Then Pesarin(2001)
considered the following combining functions:

(a) The Fisher omnibus combining function is based on the statistic
d
Tp=—23 log(},).
i=1

It is easy to show that under H, Ty is distributed as a chi-square distribution
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with 2d degrees of freedom with the variable transformation technique when all
the components are independent.

(b) The Liptak combining function is based on the statistic
d
TL = E¢—1 (1 _Ai)’
i=1

where ¢! is the quantile function of the standard normal distribution function. A

version of the Liptak function considers logistic transformation of p-values such
as

d 1=
Tp= Zlog[ by ]

i=1 1
(c) The Tippett combining function is given by
Tpr=max, sisd{l“/\i}-

In this case we note that AMT and Ty are equivalent procedures but they do not
produce the exactly same calculation results.

We note that the quadratic form is also a combining function among the
univariate statistics. In this case, one cannot represent the quadratic form as a
function of p- alues but should use the test statistics themselves. In this
approach, the amount of computation should be assessed. The order for the
applications of the permutation principle becomes as follows:

(i) Obtain the p-values for each component using the procedure (a)-(g) in section
2 for the original data set.
(ii) Compute the basic statistic by choosing a combination function (a)-(c) in this
section.
(iii) For each permutational configuration used in (i), do the same procedure (1)
and (ii).
(iv) Count the number from (iii) whose values of combined function exceed the
basic statistic.

The data for the salary of the computer experts in a company in Table 3, were
analyzed originally with a multiple regression model in Chatterjee and Price(1991).
The data have four variables such as duration of work experience and education
and status as manager or not and the amount of salary in year. In that analysis,
the salary has been used as response variable and the others, as the explanatory
variables. Therefore the original purpose of data analysis was to identify the
explanatory variables which may influence the amount of the salary. However in
this study, we are interested in comparing the three variables, the durations of
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experience and education and the amount of salary according as one is manager
or not. Then the analysis based on the traditional parametric or nonparametric
methods with the assumption of the continuity of the underlying distribution
becomes impossible. We note that the first variable, work experience, has been
reduced as the grouped data. Therefore this can be considered as the ordered
categorical data(cf. Pesarin, 2001). Puri and Sen(1985) proposed a test procedure
based on the statistics which were derived by using the likelihood ratio principle.
Therefore one may use the Puri and Sen’s procedure for this partial test. For the
second component, the status of the duration of education, the variable can take
values 1, 2 and 3 according as the graduate of highschool, college and educational
experience beyond college level. Also this can be analyzed by treating them as
grouped data. However since the number of categories is too small, it would be
more appropriate to compare them by Anderson-Darling test statistic for the two
sample case. Finally the third variable, the amount of salary, is continuous and
can be distributed as normal. Therefore the famous two sample t¢-test can be
applied to this case as the third partial test. Then one may carry out a test
procedure by choosing a combining function, which is listed as (a)-(c).

<Table 3> Salary data due to status as manger

Non-Manager Manager
Experience | Education Salary Experience | Education Salary
1 3 11608
1 2 11283
1 3 11767
2 2 11772 1 1 13876
2 1 10535 1 3 18701
2 3 12195 2 2 20872
3 2 12313 3 1 14975
4 1 11417 3 2 21371
4 3 13231 3 3 19800
4 2 12884 4 3 20263
5 2 13245 5 1 15965
5 3 13677 6 3 21352
6 1 12336 6 2 22884
6 2 13839 7 1 16978
8 2 14803 8 1 17404
8 1 13548 8 3 22184
10 1 14467 10 3 23174
10 2 15942 10 2 23780
11 1 14861 11 2 25410
12 2 16882 12 3 24170
13 1 15990 13 2 26330
14 2 17949 15 3 25685
16 2 18838 16 2 27837
16 1 17483
17 2 19207
20 1 19346
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<Table 4> p-values for each component

And
Test | Wilcoxon N er:s,on T
-Darling
p-value| 09818 0.1433 0.0000

<Table 5> p-values for selected combining functions

Combini B
[ M08\ 3 nnibus| Liptak | Tippet
function
Global
0.0038 | 0.0514 | 0.0000
p-value

We considered three types of combining functions and obtained the
permutational p- alues in the Tables 4 and 5. In Table 4, we enlisted p-values for
the partial tests for the original data and in Table 5, the global p-values for the
three types of combining functions are listed. From Table 5, we note that the
Fisher’s omnibus and Tippet combination functions yield the significant results but
the Liptak procedure does not under the significance level 0.05. Then from Table
4, we see the reason for the significance is due to the salary eamed in year.
Especially we note that since the Tippet combining function considers the largest
studentized value or the smallest p-value among the components, it is useful to
detect the extreme component.

4. Concluding remarks

When one applies the permutation principle to the multivariate data, the
permutation should be applied objectwisely not componentwisely. Let me explain
this more clearly with an example. Suppose that we have a sample Xj,...X, with
d~variate observations. Then the corresponding nxd data matrix . X becomes

Xipyeer Xag
X= .
X190
We note that data matrix X consists of » rows and d columns. If we consider to
apply the permutation principle, then we must exchange the rows. For example, if

we want to get a permutation by exchanging X; and X,, then we have to
consider the following permuted data matrix X’ such that
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an’---’Xnd
X'= .
B X]],...)A,]

Only for the case that all the components are independent, one may consider the
componentwisely permutations, whose numbers are (n))?. For more discussion you
may refer to Good(2000) and/or Pesarin(2001).

The permutation principle is one of the re-sampling methods. There is another
famous re-sampling method-the bootstrap method. The simple distinction between
the two re-sampling methods is as follows: The permutation principle re-samples
without replacement while the bootstrap method, with replacement. However it is
known that the difference for the results is considerable(cf. Good, 2000). The
application of the bootstrap method to the testing problem has been extensively
dealt with by Westfall and Young(1993). with various situations.

There are a lot of methodologies for the multivariate data(cf. Jung, 2005, Um,
2005, Kim and Jung, 2005 and Park, 2007). However almost all cases, the data are
continuous or discrete for all components. For the data used in section 3, which
has continuous and discrete components together, there is little result for the
analysis. Therefore it would be worth to take research in this way in the future.
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