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Abstract

In this paper, we consider cooperative games arising from integer total
domination problem on graphs. We introduce two games, rigid integer
total domination game and its relaxed game, and focus on their cores. We
give characterizations of the cores and the relationship between them.
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1. Introduction

In this paper, we investigate cooperative cost games that arise form integer total
domination problems on graphs. Domination problems are widely studied in graph
theory. In Haynes, Hedetniemi and Slater[4], overviews of literature on domination
problems were given.

Given a graph G=(V,Ew) with vertex weight function w: V—K, and a
given positive integer k, a function g: V—1{0,1,2,---,k} is a k-total dominating

function of G if for every vertex, v € V, Z; g(u) 2k where N(v) is the
u € N(v)
open neighborhood of v in graph G. The k-domination problem is to find a k
—~dominating function ¢ which minimizes the total weight ng (v )w ('U) When
. v E

k=1, this problem is just the weighted minimum total dominating set problem.
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The integer k total domination problem has many practical background. For
example, let G=(V,E) be a graph in which vertices represent cities and edges
represent pairs of cities they are neighbors. There is a need to build a kind of
service stations in some cities among them such that each city can receive help
from at least k service stations neighboring cities. There is also a fixed cost for
building a service station in a certain city. The problem is to determine the
number of service stations built in each city such that the total building cost is
minimum. This problem is equivalent to the problem of finding a minimum weight
k-dominating function on graph G.

A natural question that arises from above example is how to distribute the total
cost of building service stations among all the participating cities. In this paper,
we introduce two closely related cooperative cost games, a rngid integer
domination game and a relaxed integer domination game, to model the cost
distribution problem, and focus on an important game solution, core, for both game
models.

The main technique we wuse in this work is linear program duality
characterization of cores. The combinatorial optimization techniques have offered
much for cooperative games. Especially, integer linear programming and the
duality theory have proven itself a very powerful tool in the study of cores.
Shapley and Shubik [7] formulated a two-sided market as the assignment game,
and showed that the core is exactly the set of optimal solutions of a linear
programming  dual to the optimal assignment problem. This approach is further
exploited in the study of linear production game [5,1], partition game [3], packing
and covering games [2], recently dominating set games [8]. Velzen [8] introduced
three kinds of cooperative games that arise from the weighted minimum
dominating set problem on a graph.

This' paper is organized as follows. In section 2, we give some notions from
cooperative game theory and introduce two cooperative games that model the cost
allocation problems arising from integer total domination problems on graphs. In
Section 3, we give the characterizations of cores of the two games.

2. Definition of Integer Total Domination Games

In this section, we introduce two cooperative cost games that model the cost
allocation problem arising from integer domination problems on graphs. A
cooperative game (in characteristic function form) I'= (V,c) consists of a player
set V={1,2,--,n} and a characteristic function c¢:2"—R with ¢(2)=0. For
each coaliton SS V, ¢(S) represents the revenue or cost achieved by the
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players in S together. The main issue is how to fairly distribute the total revenue
or cost ¢(V) among all the players. We present the definition here only for cost

games, with the understanding that symmetric statement also holds for revenue
games,

A vector z= {zl,zg,"',zn} is called an imputation if and only if ‘Z/Z,- ZC(V)

and 2 < c(i) for each i. The core of a game I'=(V,c) is defined by

Core(I' ={z € R":2(V)=c(V)andz(S) < c(9), VS V},
where 2(95) = Zz for S V. The constraints imposed on Core(I"), which
ieS

is called group rationality, ensure that no coalition would have an incentive to
split from the grand coalition V, and do better on its own.

The study of the core is closely associated with another important concept, the
balanced set. The collection B of subsets of /V is balanced if there exists a set
of positive numbers Bs(S € B), such that for each ¢ € V, we have

Bs=1. A game (V,c) is called balanced if 523,356(5) < ¢(V) holds
€EB [
for every balanced collection B with weights {8s: S € B}. With techniques

essentially the same as linear programming duality, Shapley [6] proved that a
game has non-empty core if and only if it is balanced.

A game I'=(V,c) is called a monotonic game if it satisfies c(S) £ c(T) for
every SE TS V. Let I'=(V,c) be a balanced monotonic game and

z € Core(I’), it holds that z; =c(V)— ; z; = c(V)—c(VN\{i} =0 for
PR AND

every @ € V. That is, each core element of a monotonic balanced game is
non-negative.

Let G=(V,E) be an undirected graph with vertex set V and edge set E.
Two distinct vertices u,v € V are called adjacent if (u,v) € E. For any
non-empty set V' S V, the induced subgraph by V', denoted by G V], is a
subgraph of G whose vertex set is V' and whose edge set is the set of edges
having both endpoints in V The open neighborhood of vertex v € V o is
Nw)={ue€ V:(u,v) € E}. For any subset SE V, we define the closed

neighboring set of S to be the union of the open neighborhoods of all vertices in
S, denoted by N(S) = UUESN(v)-
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Given a graph G=(V,Fw) with vertex weight function w: V=R, and a
given positive integer k, a function g¢: V—{0,1,2,---,k} is a k- total
dominating function of G if for every vertex v € V, g(u) = k. Thus, if S

u € N(v)
is a dominating set of graph G and we define the function g where glv)=1if
vES and g(v)=0 if v& S, then g is a 1-dominating function of G. The k
-total domination problem is to find a k-total dominating function g which

minimizes the total weight Z‘/ g(v)w (v).
v E
A function f: V—>{0,1,2,--,k} is said to k- totally dominate a set S& V, if

for each vertex v € S, f(u) = k. In the rest of this paper, for

u € N(v)

convenience, we denote E f) by £(S) and f;, respectively.
uE S

Given a graph G=(V,Ew) with vertex weight function w : V=R, , the rigid
integer total domination game(rigid ITD game) I'=(V,c) corresponding to G is
defined as follows:

1. The player set is V= {1,2)"';”};
2. For each coalition S V
C(S) =m’m{ 291'“)1' I g: ;.9—){0,1,2,"',1{?}311(1\/]. € S' g = k
e

i€ ns

That is, the cost c(S) is the minimum weight of k- total dominating function
in the induced graph G [S] In this game model, each coalition can not use the
cities not belonging to itself. However, in some situations it makes sense that
coalitions are allowed to build service stations in any cities, not restricted to their
own cities, as long as the coalition members can receive help from k service
stations in its own or within 7-neighboring cities. For this reason, we define
another related game. The relaxed integer total domination game(relaxed ITD
game) I' = (N,c) corresponding to G is defined as follows: ‘ (

1. The player set is V=1{1,2,---,n };
2. For each coalition < V,
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E(S) =min{.2,fiwi ! [ V—%{O}l}2}'"fk}andvj = S; (i)fi = k}

That is, the value ¢ (8) is the minimum weight of a function which k-totally
dominates the set S. Obviously, this game is monotonic, ie., for any subset &
and T with SS T, ¢(S) < c(T).

Since coalitions have more possibilities of using the cities in the relaxed ITD
game than in the rigid ITD game, it holds that ¢(S) = ¢ (S) for all S§C V. The
grand coalition V has the same possibilities in both games, ¢(V) =c (V).

3. Characterization of the Cores

In this section, we present characterizations of the cores for the rigid and
relaxed ITD games. For convenience, we introduce a kind of vertex subset, called
basic T-set, which plays an important role in the description of the core elements
for the both ITD games.

Definition Let G=(V,E) be a graph. A subset BC V is called a basic T
-set of @ if it satisfies one of the following conditions:

(1)G[B] = K; (the complete graph with 3 vertices);

(2) | B] =2, there exists a vertex v € B such that G[B] is a v-star, ie,
B< {v}UN(v) and any two vertices in B\ {v }are not adjacent (G[B] = K; is
included in this case).

The set of all basic T~sets of &G is denoted by J.

Let T be a k-total dominating set of graph G = (V,E). It is easy to see that
T can be partitioned into several basic T-sets B, B, -, B € B, (ie. BNB,
=7 and Utizl B,=T), and correspondingly, the vertex set V can be
partitioned into t disjoint subset Vi, Vi, -, V, such that B < V, < N(B)
(t=1,2,-,t) and Ui, V;= V. Now, we provide a characterization of the core
elements of the relaxed ITD game and the rigid ITD game.

Let '=(V,c) and I'=(V,c) be the corresponding rigid ITD game and
relaxed ITD game, respectively. Now we provide efficient core descriptions of the
cores of both k-domination games in terms of coalitions corresponding to basic T
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-set.

Theorem 3.1 Let G=(V,Ew) be a graph with vertex weight function
w: V>R, and I = (V,c) be the corresponding relaxed ITD game. It holds that
z € Core(I") if and only if

(1) 2= 0, and 2(V) =¢ (V);
(2) for each basic T—set B€ 3,, z(N(B)) < kw(B).

Proof. Suppose that 2z € Core(I"). Then (1) holds because I'=(Vc) is a
monotonic  game. For each basic 7T-set B €T, the function
f:N(B)—{0,1,2,--,k} such that f;=Fk if j€B and f;=0 if j& B. Clearly,
this function k-totally dominates the set N(B), which implies that N(B) is a
coalition with cost at most kw(B). That is, z(N(B)<¢ (N(B))<kw(B).

To prove its sufficiency, we show that 2(8)<c (S) holds for all SS V. Let
SC V be an arbitrary subset and f : V—>{0,1,2,---,k} be an optimal weighted

function which k-totally dominates the subsetS. That is, c (8)= E je sf j*wj.

Then we have z(S)S%AfI;z(N(B))S;Bf;w(B) < c(S),

where the first two inequalities hold because 2z = 0 and f i k-total dominates
the subset S, the second inequality holds because of our assumption (2). Hence

z € Core(I').

In the next theorem we provide a description of the core of rigid ITD game
which is similar to that of relaxed ITD game given above.

Theorem 32 Let G=(V,Ew) be a graph with vertex weight function
w: V>R, and I'=(V,c) be the corresponding rigid ITD game. It holds that
2z € Core(I') if and only if

(1) 2(V)=c(V);
(2) for each basic T-set Be?] and each subset
S:BC §C N(B),2(S) < kw(B).

Proof. Suppose that z € Core(I"). Then we have z(V)=c(V). For each
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Be€ 3, and each subset S: BS S N(B), the function g:S5—{0,1,2,-,k}
such that g;=k if j € BNS and g;,=0 if j& BNS is a k-total dominating
function in the induced graph G[S], it implies that S is a coalition with cost at
most kw(S). Hence z(§) < kw(B).

Now we prove its sufficiency. Let SE V be an arbitrary coalition and

g* :8-1{0,1,2,---,k}be a minimum weight k-total dominating function in the
induced graph G[S), that is, Z jESg;wj =c(S). Since there exists a multiset Zof

basic 7-sets (may be repeated) such that every basic 7-set is contained in
exactly k v-stars in the collection =, for each basic 7-set BE€ B and each

subset S, z(S) :%;HgZQSZ(S)S;g;nS w(B)<c(S), where the

inequality holds followed from our assumption (2).
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