DOI QR코드

DOI QR Code

Secretory Overexpression of β-Agarase in Bacillus subtilis and Antibacterial Activity of Enzymatic Products

Bacillus subtilis에서 β-agarase의 분비형 과발현 및 효소분해산물의 항균활성

  • Jang, Min-Kyung (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Lee, Ok-Hee (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Yoo, Ki-Hwan (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Lee, Dong-Geun (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Lee, Sang-Hyeon (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
  • 장민경 (신라대학교 공과대학 생명공학과) ;
  • 이옥희 (신라대학교 공과대학 생명공학과) ;
  • 류기환 (신라대학교 공과대학 생명공학과) ;
  • 이동근 (신라대학교 공과대학 생명공학과) ;
  • 이상현 (신라대학교 공과대학 생명공학과)
  • Published : 2007.11.30

Abstract

The gene for ${\beta}-agarase$ of an Agarivorans sp. JA-1 was expressed in Bacillus subtilis DB104, 168 and ISW1214 strains for mass-production. Among 3 host strains, B. subtilis ISW1214 secreted the highest amount of recombinant ${\beta}-agarase$ with a specific activity of 201 U/mg and 360 mg of protein into culture broth. This was approximately 130-fold higher than the production in E. coli as an expression host. Recombinant enzyme produced neoagarooligosaccharides such as neoagarohexaose, neoagarotetraose, and neoagarobiose from agar. Produced neoagarooligosaccharides showed antibacterial activities against gram-negative E. coli and gram-positive B. subtilis at a concentration of 1.5%. These data suggest that neoagarooligosaccharides could be an useful preservative for food industry.

Agarivorans sp. JA-1 유래의 내열성 ${\beta}-agarase$ 유전자의 분비형 과발현과 재조합효소분해산물의 항균효과를 확인하였다. B. subtilis 168, DB104, ISW1214의 3가지 재조합발현 숙주를 비교하여 ISW1214 균주가 LB배지에서 배양 9시간에 총 효소활성 52,460 U과 비활성 201 U/mg의 최대 발현량을 보이는 것을 확인하였다. 이는 E. coli BL21 균주에 비해 총 효소활성은 약 90배, 비활성은 약 100배 증가한 결과이다. 재조합 ${\beta}-agarase$의 기질로 저가의 한천을 사용하여 neoagarobiose, neoagarotetraose 등 의 neoagarooligosaccharide를 생산하였으며, 생산된 neoagarooligosaccharides는 그람양성 세균인 B. subtilis와 그람음성 세균인 E. coli 모두의 성장을 저해하는 항균활성이 있음을 확인하였다. 따라서 본 연구에서 생산된 재조합 ${\beta}-agarase$와 재조합 효소의 한천분해 산물은 식품산업 등에 사용가능한 천연 항균제 생산에 활용이 가능할 것으로 기대된다.

Keywords

References

  1. Araki, T., Z. Lu and T. Morishita. 1998 Optimization of parameters for isolation of protoplasts from Gracilaria verrucosa (Rhodophyta). J. Mar. Biotechnol. 6, 193-197.
  2. Do, J. H. 1997. Extraction and purification of agar from Gelidium amansii. J. Korean Fish. Soc. 30, 423-427.
  3. Duckworth, M. and W. Yaphe. 1971. Structure of agar. I. Fractionation of a complex mixture of polysaccharides. Carbohydr. Res. 16, 189-197. https://doi.org/10.1016/S0008-6215(00)86113-3
  4. Groleau, D. and W. Yaphe. 1977. Enzymatic hydrolysis of agar: purification and characterization of $\beta$-neoagarotetraose hydrolase from Peudomonas atlantica. Can. J. Microbiol. 23, 672-679. https://doi.org/10.1139/m77-100
  5. Kim, B. J., Η. J. Kim, S. D. Ha, S. H. Hwang, D. S. Byun, T. H. Lee and J. Y. Kong. 1999. Purification and characterization of $\beta$-agarase from marine bacterium Bacillus cereus ASK202. Biotechnol. Lett. 21, 1011-1105. https://doi.org/10.1023/A:1005604618242
  6. Kim, K. H., J. Y. Kim, H. B. Kim and D. S. Lee. 2001. Expression of a $\beta$-1,3-glucanase gene from Bacillus circulans in B. subtilis and B. megaterium. Kor. J. Microbiol. 37, 253-258.
  7. Kobayashi, R. Μ. Takisada, Τ. Suzuki, Κ. Kirimura and S. Usami. 1997. Neoagarobiose as a novel moisturizer with whitening effect. Biosci. Biotechnol. Biochem. 61, 62-63.
  8. Kohno, T., H. Kitagawa, T. Hiraga. 1990. Production of hetero-oligosaccharides. pp. 87-105, In Kukami, G. K. (ed.), Shokuhin sangyo bioreactor system, Jissen bioreactor, Shokuhin Kagaku Shimbunsa, Tokyo.
  9. Kono, T. and H. Hidaka. 1989. Properties and production of neoagarooligosaccharide. J. Agric. Chem. Soc. Jpn. 63, 1126-1129.
  10. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  11. Lee, D. G., G. T. Park, N. Y. Kim, E. J. Lee, M. K. Jang, Y. G. Shin, G. S. Park, T. M. Kim, J. H. Lee, S. J. Kim and S. H. Lee. 2006. Cloning, expression, and characterization of a glycoside hydrolase family 50 beta-agarase from a marine Agarivorans isolate. Biotechnol. Lett. 28, 1925-1932. https://doi.org/10.1007/s10529-006-9171-y
  12. Ohta, Y., Y. Nogi, M. Miyazaki, Z. Li, Y. Hatada, S. Ito and Koki Horikishi. 2004. Enzymatic properties and nucleotide and amino acid sequences of a thermostable $\beta$- agarase from the novel marine isolate, JAMB-A94. Biosci. Biotech. Bioch. 68, 1073-1081. https://doi.org/10.1271/bbb.68.1073
  13. Park, G. T., D. G. Lee, N. Y. Kim, E. J. Lee, J. G. Jung, J. H. Lee, M. S. Heo and S. H. Lee. 2005. Isolation and characterization of a marine bacterium producing thermotolerant agarase. J. Life Sci. 15, 884-888. https://doi.org/10.5352/JLS.2005.15.6.884
  14. Sambrook, J. and D. W. Russell. 1989. Molecular Cloning: A Laboratory Manual. 2nd eds., Cold Spring Harbor Laboratory Press, New York, New York.
  15. Somogy, M. 1952. Notes on sugar determination. J. Biol. Chem. 195, 19-23.
  16. Yoshizawa, Y., A. Ametani, J. Tsunehiro, K. Nomura, M. Itoh, F. Fukui and S. Kaminogawa. 1995. Macrophage stimulation activity of the polysaccharide fraction from a marine alga (Porphyra yezoensis): structurefunction relationships and improved solubility. Biosci. Biotech. Bioch. 59, 1933-1939. https://doi.org/10.1271/bbb.59.1933

Cited by

  1. Characterization of β-agarase from Isolated Simiduia sp. SH-4 vol.26, pp.4, 2016, https://doi.org/10.5352/JLS.2016.26.4.453
  2. The Classification, Origin, Collection, Determination of Activity, Purification, Production, and Application of Agarases vol.22, pp.2, 2012, https://doi.org/10.5352/JLS.2012.22.2.266
  3. Isolation of a Marine-derived Flammeovirga sp. mbrc-1 Strain and Characterization of Its Agarase vol.26, pp.6, 2011, https://doi.org/10.7841/ksbbj.2011.26.6.552