Smallest-Small-World Cellular Genetic Algorithms

최소좁은세상 셀룰러 유전알고리즘

  • 강태원 (강릉대학교 컴퓨터공학과)
  • Published : 2007.11.15

Abstract

Cellular Genetic Algorithms(CGAs) are a subclass of Genetic Algorithms(GAs) in which each individuals are placed in a given geographical distribution. In general, CGAs# population space is a regular network that has relatively long characteristic path length and high clustering coefficient in the view of the Networks Theory. Long average path length makes the genetic interaction of remote nodes slow. If we have the population#s path length shorter with keeping the high clustering coefficient value, CGAs# population space will converge faster without loss of diversity. In this paper, we propose Smallest-Small-World Cellular Genetic Algorithms(SSWCGAs). In SSWCGAs, each individual lives in a population space that is highly clustered but having shorter characteristic path length, so that the SSWCGAs promote exploration of the search space with no loss of exploitation tendency that comes from being clustered. Some experiments along with four real variable functions and two GA-hard problems show that the SSWCGAs are more effective than SGAs and CGAs.

셀룰러 유전알고리즘(CGAs)은 모집단이 특정한 위상 구조를 갖는 유전알고리즘의 일종이다. 보통의 경우, CGAs의 모집단 공간은 네트워크 이론 측면에서 상대적으로 긴 평균경로길이와 큰 클러스터링계수를 갖는 정규 격자형 위상 구조이다. 평균경로길이가 길면 멀리 떨어진 개체들 사이의 유전적 상호작용이 느리게 일어난다. 따라서 클러스터링계수를 유지하면서 평균경로길이를 줄인다면 개체의 다양성이 유지되면서도 모집단이 보다 빠르게 수렴할 것이다. 이 논문에서는 최소좁은세상 셀룰러 유전알고리즘(SSWCGAs)을 제안한다. SSWCGAs에서 각 개체는 클러스터링이 잘되었으면서도 노드를 연결하는 평균경로길이가 짧은 모집단에 거주하여, 클러스터링에 의한 세부탐색 능력을 유지하면서도 전역탐색을 잘하게 된다. 네 가지 실변수 함수와 두 가지 GA-hard 문제에 대한 실험을 통하여 SSWCGAs가 SGAs 및 CGAs보다 효과적임을 보였다.

Keywords

References

  1. Enrique Alba, Mario Giacobini, Marco Tomassini, and Sergio Romero, 'Comparing Synchronous and Asynchronous Cellular Genetic Algorithms,' Proc. 7th International Conference on Parallel Problem Solving from Nature, pp. 601-610, 2002
  2. D. Watts and S. H. Strogatz, 'Collective dynamics of small world networks,' Nature(London) 393, 440, 1998
  3. Mark, Buchanan, 'Ubiquity: the science of history... or why the world is simpler than we think,' 2001
  4. D. Watts, 'Small world: the dynamics of networks between order and randomness,' Princeton, 1999
  5. D. Simard, L. Nadeau, and H. Kroger, 'Fastest Learning in Small-World Neural Networks,' Physics Letters A, Volume 336, Issue 1, pp. 8-15, 28 February 2005 https://doi.org/10.1016/j.physleta.2004.12.078
  6. Christopher Johansson and Martin Rehn, 'Small-World Connectivity and Attractor Neural Networks,' www.nada.kth.se/~cjo/documents/small_world.pdf
  7. Gergely Timar and David Balya, 'Regular Small-World Cellular Neural Networks: Key Properties and Experiments,' Proceedings of the International Symposium ISCAS '04. Vol.3, pp. 69-72, 2004
  8. Whitley, D., Cellular Genetic Algorithms, Proc. 5th International Conference on Genetic Algorithms, 1993
  9. Enrique Alba and Bernabe Dorronsoro, 'Solving the Vehicle Routing Problem by Using Cellular Genetic Algorithms,' in: Evolutionary Computation in Combinatorial Optimization (EvoCOP), in: Lecture Notes in Comput. Sci., Vol.3004, pp. 11-20 Springer-Verlag, Berlin, 2004
  10. Gianluigi Folino, Clara Pizzuti and Giandomenico Spezzano, 'Combining Cellular Genetic Algorithms and Local Search for Solving Satisfiability Problems,' Proc. Tenth IEEE Int'l Conf. on Tools with Artificial Intelligence, pp. 192-198, 1998
  11. Toffoli T., Margolus N., 'Cellular Automata Machines A New Environment for Modeling,' The MIT Press, Cambridge, Massachusetts, 1986
  12. E. Alba and J. M. Troya, 'Cellular evolutionary algorithms: Evaluating the influence of ratio,' PPSN VI, Vol. 1917 of Lecture Notes in Computer Science, pp. 29-38, Springer Verlag, 2000
  13. J. Sarma and K. A. De Jong, 'An analysis of local selection algorithms in a spatially structured evolutionary algorithms,' Proc. 6th International Conference on Genetic Algorithms, pp. 181-186, 1997
  14. William G. Frederick, Robert L. Sedlmeyer, Curt M. White, 'The Hamming metric in genetic algorithms and its application to two network problems,' Proc. of the 1993 ACM/SIGAPP symposium on Applied computing: states of the art and practice, pp. 126-130, Indianapolis, Indiana, United States, 1993
  15. Marek W. Gutowski, 'AGING, DOUBLE HELIX AND SMALL WORLD PROPERTY IN GENETIC ALGORITHMS,' arXiv:cs.NE/0205061 v1 23 May 2002
  16. V. Gordon, K. Mathias, and D. Whitley, 'Cellular Genetic Algorithms as Function Optimizers: Locality Effects,' Proc. 9th Symposium on Applied Computing (SAC'94), pp. 237-241, 1994
  17. Joshua L. Payne, Margaret J. Eppstein: Emergent mating topologies in spatially structured genetic algorithms. GECCO 2006: 207-214. 2005
  18. T. Nishikawa, A.E. Motter, Y-C. Lai and F.C. Hoppensteadt, 'Smallest small-world networks,' Physical Review E, Vol.66., 2002
  19. R. Albert and A.-L. Barabasi, 'Statistical mechanics of complex networks,' Rev. Mod. Phys., Vol. 74, No.1, January 2002
  20. D. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning, Addison-Wesley, 1989
  21. D. David E. Goldberg, Kalyanmoy Deb, Jeffrey Horn, 'Massive Multimodality, Deception, and Genetic Algorithms,' Parallel Problem Solving from Nature, 2, North-Holland, pp. 37-46, 1992
  22. Albert-Laszlo Barabasi, 'Linked: The New Science of Networks,' FEBRUARY 7, 2000
  23. R. Cohen, S. Havlin, 'Scale-free networks are ultrasmall', Phys. Rev. Lett. 90, 058701, 2003 https://doi.org/10.1103/PhysRevLett.90.058701