DOI QR코드

DOI QR Code

임신기부터 성장기 동안 Docosahexaenoic Acid 보충에 의한 흰쥐의 공간기억력 개선 효과

Effect of Supplementation with Docosahexaenoic Acid from Gestation to Adulthood on Spatial Learning Performance in Rat

  • 임선영 (한국해양대학교 해양환경생명과학부)
  • Lim, Sun-Young (Division of Marine Environment and Bioscience, Korea Maritime University)
  • 발행 : 2007.10.30

초록

SD계 흰쥐를 사용하여 motor activity 실험에서 동물들의 자발적인 운동성을 측정한 결과, 주어진 시간 내 움직인 시간과 움직인 거리에는 n-3 지방산이 결핍된 식이군(Def group)과 DHA가 첨가된 식이군(Def +DHA group)간에 유의적 차이를 관찰할 수가 없었다. 학습효과 실험에서 n-3 지방산이 결핍된 식이군(Def group)의 경우 목적 플래트폼까지 걸리는 시간이 DHA 첨가 식이군(Def +DHA group)에 비하여 유의적으로 길었음을 관찰할 수가 있었다(p<0.05). 수영한 거리(swimming distance)와 수영 속도(swimming speed)의 경우 수영 속도에는 유의적 차이가 없었으나 n-3 지방산이 결핍된 식이군(Def group)의 경우, DHA 첨가 식이군(Def +DHA group)에 비해 수영 풀에서 움직인 거리가 유의적으로 길었다(p<0.05). 두 식이군의 흰쥐들이 수영한 시간(swimming time)과 쉬고 있는 시간(resting time)의 경우, 쉬는 시간에는 유의적 차이가 없었으나 수영 시간 또한 n-3 지방산이 결핍된 식이(Def group)로 사육된 쥐가 DHA가 첨가된 식이로 사육된 쥐(Def +DHA group)보다 수영한 시간이 유의적으로 길었다(p<0.05). 기억력 테스트에서 n-3 지방산이 결핍된 식이군(Def group)의 경우 원래 A 지역에 대한 기억이 낮아서 A 지역을 지나가는 횟수가 다른 지역 B, C, D를 지나는 횟수와 유의적 차이가 없었다. 반면, DHA가 첨가된 식이군(Def +DHA group)의 경우 목적 플래트폼이 있었던 A 지역에 대한 기억으로 다른 지역인 B, C, D보다 지나가는 횟수가 유의적으로 많았음을 관찰하였다(p<0.05). 이상의 결과로부터 임신에서부터 성인이 될 때까지 n-3 지방산이 결핍된 식이로 사육된 쥐와 비교할 때 DHA가 첨가된 식이로 사육된 흰쥐가 Morris water maze를 이용한 공간기억력 실험에서 우수한 기억 학습효과를 나타냄을 알 수가 있었고 이러한 결과는 n-3와 n-6 지방산의 균형적인 섭취의 중요성을 부각시키고 있다.

The effect of supplementation with docosahexaenoic acid into n-3 fatty acid deficient diet on improvement of loaming related brain function was investigated. On the second day after conception, Sprague Dawley strain dams were subjected to a diet containing either n-3 fatty acid deficient (Def) or n-3 fatty acid deficient + docosahexaenoic acid (Def+DHA). After weaning, male pups were fed on the same diet of their respective dams until adulthood. Motor activity and Morris water maze tests were measured at 10 weeks old. In motor activity test, there were no statistically significant differences in moving time and moving distance between the Def and Def+DHA diet groups. The n-3 fatty acid deficient with DHA (Def+DHA) group exhibited a shorter escape latency, swimming time and swimming distance (P<0.05) compared to the n-3 fatty acid deficient group (Def) but there was no difference in resting time and swimming speed between the experimental diet groups. In memory retention trial, the number of crossing of the platform position (region A) was significantly greater than those of other regions for the Def+DHA group. However, the Def group swam randomly without preference for the provisions platform location, indicating poorer memory retention. From those results, supplementation with DHA into the n-3 fatty acid deficient diet improved the spatial loaming ability in rats as assessed by Morris water maze test.

키워드

참고문헌

  1. Calderon, F. and H. Y. Kim. 2004. Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J. Neurochem. 90, 979-988. https://doi.org/10.1111/j.1471-4159.2004.02520.x
  2. Carrie, I., M. Clement, D. Javel, H. Frances and J. M. Bourre. 2000. Phospholipid supplementation reverses behavior and biochemical alterations induced by n-3 polyunsaturated fatty acid deficiency in mice. J. Lipid Res. 41, 473-480.
  3. Delion, S., S. Chalon, J. Herault, D. Guilloteau, J. C. Besnard and G. Durand. 1994. Chronic dietary $\alpha$-linolenic acid deficiency alters dopaminergic and serotoninergic neurotransmission in rats. J. Nutr. 124, 2466-2476. https://doi.org/10.1093/jn/124.12.2466
  4. DeMar, J. C., K. Ma, J. M. Bell, M. Igarishi, D. Greenstein and S. Rapoport. 2005. Dietary n-3 polyunsaturated fatty acid deprivation in rats following weaning increases their behavioral depression and aggression test scores. J. Lipid Res. 47, 172-180. https://doi.org/10.1194/jlr.M500362-JLR200
  5. Gamoh, S., M. Hahimoto, K. Sugioka, M. Shahdat- Hossain, Y. Misawa and S. Masumura. 1991. Chronic administration of docosahexaenoic acid improves reference memory-related learning ability in young rats. Neurosci. 93, 237-241. https://doi.org/10.1016/S0306-4522(99)00107-4
  6. Greiner, R. S., T. Moriguchi, B. M. Slotnick, A. Hurron and N. Salem. 2001. Olfactory discrimination deficits in n-3 fatty acid-deficient rats. Physiol. Behav. 72, 379-385. https://doi.org/10.1016/S0031-9384(00)00437-6
  7. Hibbeln, J. R. and N. Salem. 2001. Omega-3 fatty acids and psychiatric disorders. pp. 3-22. In Fatty acids, Mostofsky et al. editors, Humana Press Inc., Totowa.
  8. Kim, H. Y., M. Akbar, A. Lau and L. Edsall. 2000. Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Role of phosphatidylserine in antiapoptotic effect. J. Biol. Chem. 275, 35215-35223. https://doi.org/10.1074/jbc.M004446200
  9. Lim, S. Y. and H. Suzuki. 2000. Intakes of dietary docosahexaenoic acid ethyl ester and egg phosphatidylcholine improve maze-learning ability in young and old mice. J. Nutr. 130, 1629-1632. https://doi.org/10.1093/jn/130.6.1629
  10. Lim, S. Y. and H. Suzuki. 2001. Changes in maze behavior of mice occur after sufficient accumulation of docosa-hexaenoic acid in brain. J. Nutr. 131, 319-324. https://doi.org/10.1093/jn/131.2.319
  11. Lim, S. Y. and H. Suzuki. 2002. Dose-response effect of docosahexaenoic acid ethyl ester on maze behavior and brain fatty acid composition in adult mice. Int. J. Vitam. Nutr. Res. 72, 77-84. https://doi.org/10.1024/0300-9831.72.2.77
  12. Moriguchi, T., R. Greiner and N. Salem. 2000. Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J. Neurochem. 75, 2563-2573. https://doi.org/10.1046/j.1471-4159.2000.0752563.x
  13. Morris, R. 1984. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11, 47-60. https://doi.org/10.1016/0165-0270(84)90007-4
  14. Okada, M., T. Amamoto, M. Tomonaga, A. Kawachi, K. Yazawa, K. Mine and M. Fujiwara. 1996. The chronic administration of docosahexaenoic acid reduces the spatial cognitive deficit following transient forebrain ischemia in rats. Neurosci. 71, 17-25. https://doi.org/10.1016/0306-4522(95)00427-0
  15. Reeves, P. G., F. H. Neilsen and G. C. Fahey. 1993. Committee report on the AIN-93 purified rodent diet. J. Nutr. 123, 1939-1951. https://doi.org/10.1093/jn/123.11.1939
  16. Stewart, C. A. and R. Morris. 1993. The water maze. pp. 107-122. In Behavioral Neuroscience: A Practical Approach, vol. 1, Sagal A. Editor, Oxford University Press, New York, NY.
  17. Suzuki, H., S. J. Park, M. Tamura and S. Ando. 1998. Effect of the long-term feeding of dietary lipids on the learning ability, fatty acid composition of brain stem phospholipids and synaptic membrane fluidity in adult mice: A comparison of sardine oil diet with palm oil diet. Mech. Age Dev. 101, 119-128. https://doi.org/10.1016/S0047-6374(97)00169-3
  18. Weisinger, H. S., A. J. Vingrys and A. J. Sinclair. 1996. Effect of dietary n-3 deficiency on the electroretinogram in the guinea pig. Ann. Nutr. Meta. 40, 91-98. https://doi.org/10.1159/000177900
  19. Willatts, P., J. S. Forsyth, M. K. DiModugno, S. Varma and M. Colvin. 1998. Influence of long-chain polyunsaturated fatty acids on infant cognitive function. Lipids 33, 973-980. https://doi.org/10.1007/s11745-998-0294-7
  20. Yamamoto, N., M. Saitoh, A. Moriuchi, M. Nomura and H. Okuyama. 1987. Effect of dietary $\alpha$-linolenate/linoleate balance on brain lipid compositions and learning ability of rats. J. Lipid Res. 28, 144-151.