DOI QR코드

DOI QR Code

Antimutagenicity and Anticancer Activity of Soybean Fractions Extracted by Solvents

대두 분획물의 항돌연변이 및 항암활성 효과

  • Lim, Sun-Young (Division of Marine Environment & Bioscience, Korea Maritime University)
  • 임선영 (한국해양대학교 해양환경생명과학부)
  • Published : 2007.10.30

Abstract

Inhibitory effects of several solvent fractions from soybean on mutagenicity using Salmonella typhimurium TA 100 in Ames test and growth of human cancer cells (AGS gastric adenocarcinoma, Hep 3B hepatocellular cancinoma and HT-29 colon cancer cells) were studied. The treatment of dichloromethane and ethylacetate fractions (2.5 mg/assay) extracted from soybean to Ames test system inhibited aflatoxin $B_1\;(AFB_1)$ induced mutagenicity by 83%, respectively, and showed a higher antimutagenic effect than other solvent fractions. In case of N-methyl-N#-nitro-N-nitrosoguamidine (MNNG) induced mutagenicity, the ethylacetate fraction showed the highest inhibitory effect (by 67%) among solvent extracts, although the inhibitory effect was not stronger compared with $AFB_1$ induced mutagenicity. In sulforhodamine B (SRB) assay, the treatment of ethylacetate fraction (2 mg/assay) significantly inhibited the growth of AGS, Hep 3B and HT-29 cancer cells by 66%, 73% and 77%, respectively, followed with the intermediate and dichloromethane fractions. These results indicated that soybean fraction extracted with ethylacetate had higher inhibitory effects on $AFB_1$ and MNNG in Ames test and growth inhibition activity to human cancer cells was appeared, suggesting that soybean fraction extracted with ethylacetate may contain the biologically active compounds.

대두를 먼저 헥산(Hex)으로 지방을 제거한 후 메탄올로 추출한 추출물에서 항돌연변이성 및 항암활성 물질을 분리하기 위해 극성이 다른 용매인 디클로로메탄($CH_2Cl_2$), 에틸아세테이트(EtOAC), 부탄올(BuOH)로 분획하여 각 분획물의 항돌연변이 및 항암활성 효과를 검토하였다. $AFB_1$에 대한 돌연변이 억제효과는 대두의 메탄을 추출물(MeOH)의 분획물들 중 디클로로메탄 분획물($CH_2Cl_2$)과 에틸아세테이트 분획물(EtOAc)은 2.5 mg/plate 첨가농도에서 각각 83%로 상당히 높은 항돌연변이 효과를 나타내었다. 중간 분획물(Inter)의 경우는 56%의 항돌연변이 효과를 나타내었으나 다른 분획물들의 경우 항돌연변이 효과가 낮았다. 한편 MNNG의 경우, $AFB_1$에 비해 돌연변이 저해효과가 떨어지지만 그 중에서도 에틸아세테이트 분획물(EtOAc)이 67%로 가장 높은 항돌연변이 효과를 나타내었으며 중간 분획물과 디클로로메탄 분획물($CH_2Cl_2$)은 각각 63%, 49%의 돌연변이 저해효과를 나타내었다. 대두의 메탄을 추출물은 첨가농도 2 mg/assay에서 44%의 인체 위암세포의 증식 억제효과를 가졌고 대두 메탄을 추출물의 분획물들 중 에틸아세테이트층(EtOAC)의 저해 효과가 가장 높았는데 동일농도에서 66%로 위암세포 성장을 저해시키는 효과를 나타내었고 디클로로메탄($CH_2Cl_2$)과 중간 분획물(Inter)의 경우에는 각각 54% 및 51%의 저해효과를 나타내었다. Hep 3B 인체 간암세포의 경우, 대두 메탄을 추출물을 2 mg/assay 투여했을 때 60%의 저해효과를 나타내었으며 여기에서도 분획물들 중에서 에틸아세테이트 분획물(EtOAC)이 73%로 가장 높은 저해효과를 보였다. 대두의 메탄을 추출물은 첨가농도 2 mg/assay에서 44%의 인체 결장암세포 증식억제효과를 가졌고 대두 메탄을 추출물의 분획물들 중 에틸아세테이트층(EtOAC)의 저해 효과가 가장 높았는데 동일농도에서 77%의 결장암세포의 성장을 저해시키는 효과를 나타내었다. 이상의 결과로부터 대두 분획물들 중 특히 에틸아세테이트 분획물에 의한 항돌연변이 및 항암활성효과가 가장 높았으므로 이 분획물에 주로 isofavone류가 함유되어 있으므로 에틸아세테이트 분획물을 더욱 정제하여 연구할 필요가 있다고 여겨진다.

Keywords

References

  1. Ames, B. N., J. McGann and E. Yamasaki. 1975. Method for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Muta. Res. 31, 347-364. https://doi.org/10.1016/0165-1161(75)90046-1
  2. Bae, S. and G. S. Moon. 1997. A study on the antioxidative activities of Korean soybeans. J. Kor. Soc. Food Sci. Nutr. 26, 203-208.
  3. Becker, F. F. 1981. Inhibition of spontaneous hepatocarcinogenesis in C3H/HeN mice by Edi Pro A, an isolated soy protein. Carcinogenesis 2, 1213-1214. https://doi.org/10.1093/carcin/2.11.1213
  4. Billings, P. C., P. M. Newberne and A. R. Kennedy. 1990. Pretease inhibitor suppression of colon and anal gland carcinogenesis induced by dimethylhydrazine. Carcinogenesis 11, 1083-1086. https://doi.org/10.1093/carcin/11.7.1083
  5. Damasceno, N. R., M. A. Gidlund, H. Goto, C. T. S. Dias, F. S. Okawabata and D. S. P. Abdalla. 2001. Casein and soy protein isolate in experimental atherosclerosis: influence on hyperlipidemia and lipoprotein oxidation. Ann. Nutr. Metab. 45, 38-46. https://doi.org/10.1159/000046704
  6. Graf, E., J. R. Mahoney, R. G. Bryant and J. W. Eaton. 1984. Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site. J. Biol. Chem. 259, 3620-3624.
  7. Han, J. S., T. Y. Ha and S. R. Kim. 2006. Studies on physiological properties of isoflavone from soybean and its processing properties. J. Kor. Soc. Food Sci. Nutr. 35, 1427-1433. https://doi.org/10.3746/jkfn.2006.35.10.1427
  8. Hayes, R. E., G. N. Bookwalter and E. B. Bagley. 1977. Antioxidant activity of soybean flour and derivatives. J. Food Sci. 42, 1527-1532. https://doi.org/10.1111/j.1365-2621.1977.tb08417.x
  9. Hilakivi, C. L., I. Onojafe, M. Raygada, E. Cho, T. Skar, I. Russo and R. Clarke. 1999. Prepubertal exposure to zearalenone or genistein reduces mammary tumorigenesis. Br. J. Cancer 80, 1682-1688. https://doi.org/10.1038/sj.bjc.6690584
  10. Konoshima, T. and K. H. Lee. 1986. Antitumor agents, 82. Cytotoxic sapogenols from aesculus hippocastanum. J. Nat. Proc. 49, 650-656. https://doi.org/10.1021/np50046a015
  11. Lamartiniere, C. A., J. Moore, M. Holland and S. Barnes. 1995. Neonatal genistein chemoprevents mammary cancer. Proc. Soc. Exp. Biol. Med. 208, 120-123.
  12. Lee, H. P., L. Gourley, S. W. Duffy, J. Esteve, J. Lee and N. E. Day. 1991. Dietary effects on breast-cancer risk in Singapore. Lancet 337, 1197-1200. https://doi.org/10.1016/0140-6736(91)92867-2
  13. Lu, L. J. W., K. F. Anderson, J. J. Grady and M. Nagamani. 1996. Effects of soya consumption for one month on steroid hormones in premenopausal women: Implications for breast cancer risk reduction. Cancer Epidemiol. Biomarkers & Prev. 5, 63-70.
  14. Maron, D. M. and B. N. Ames. 1983. Reversed methods for the Salmonella mutagenicity test. Muta. Res. 113, 173-215. https://doi.org/10.1016/0165-1161(83)90010-9
  15. Messadi, D. V., P. Billings, G. Shklar and A. R. Kennedy. 1986. Inhibition of oral carcinogenesis by a protease inhibitor. J. Natl. Cancer Inst. 76, 447-452.
  16. Messina, M. and V. Messina. 1993. Increasing use of soyfoods and their potential role in cancer prevention. J. Am. Diet Asso. 91, 836-840.
  17. Messina, M., V. Persky, K. D. R. Setchell and S. Branes. 1994. Soy intake and cancer risk: A review of the in vitro and in vivo data. Nutr. Cancer 21, 113-131. https://doi.org/10.1080/01635589409514310
  18. Mirsalis, J. C., C. M. Hamilton, J. E. Schindler, C. E. Green and J. E. Dabbs. 1993. Effects of soya bean flakes and liquorice root extract on enzyme induction and toxicity in B6C3F1 mice. Food Chem. Toxic. 31, 343-350. https://doi.org/10.1016/0278-6915(93)90189-6
  19. Monks, A., D. Scudiero, P. Skehan, R. Shoemarker, K. Paull, D. Vistica, C. Hose, J. Langley, P. Cronise, A. Vaigro-Wolff, M. Gray-Goodrich, H. Campbell, J. Mayo and M. Boyd. 1991. Feasiblity of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cnacer Inst. 83, 757-766. https://doi.org/10.1093/jnci/83.11.757
  20. Pratt, D. E. 1972. Water soluble antioxidant activity in soybeans. J. Food Sci. 37, 322-323. https://doi.org/10.1111/j.1365-2621.1972.tb05845.x
  21. Price, K. R. and G. R. Fenwick. 1985. Naturally occurring estrogens in foods: a review. Food Addit. Contam. 2, 73-106. https://doi.org/10.1080/02652038509373531
  22. Sarkar, F. H. and Y. Li. 2003. Soy isoflavones and cancer prevention. Cancer Invest. 21, 817-818. https://doi.org/10.1081/CNV-120023782
  23. Shamsuddin, A. M. 1999. Metabolism and cellular functions of IP6: a review. Anticancer Res. 19, 3733-3736.
  24. Skehan, P., R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney and M. R. Boyd. 1990. New colorimetric cytotoxity assay for anticancer-drug screening. J. Natl. Cnacer Inst. 82, 1107-1112. https://doi.org/10.1093/jnci/82.13.1107
  25. Sung, M. K. and M. Y. Park. 2002. Cytotoxic and apoptotic effects of soybean and brown rice extracts on hormone dependent/independent breast cancer cell lines. J. Kor. Soc. Food Sci. Nutr. 31, 521-526. https://doi.org/10.3746/jkfn.2002.31.3.521
  26. Takahashi, M., K. Imaida, F. Furukawa and Y. Hayashi. 1991. Inibitory effects of soybean trypsin inhibitor during initiation and promotion protease of N-nitrosobis(2-oxopropyl) amine-induced hamster pancreatic carcinogenesis. Pro. Clin. Biol. Res. 369, 145-154.
  27. Teixeira, S. R., S. M. Potter, R. Weigel, S. Hannum, J. W. Jr. Erdman and C. M. Hasler. 2000. Effects of feeding 4 levels of soy protein for 3 and 6 wk on blood lipids and apolipoproteins in moderately hypercholesterolemic men. Am. J. Clin. Nutr. 71, 1077-1084. https://doi.org/10.1093/ajcn/71.5.1077
  28. Vincent, A. and L. A. Fitzpatrick. 2000. Soy isoflavones: are they useful in menopause? Mayo Clin. Proc. 75, 1174-1184. https://doi.org/10.4065/75.11.1174
  29. Vucenik, I., K. Sakamoto, M. Bansal and A. M. Shamsuddin. 1993. Inhibition of rat mammary carcinogenesis by inositol hexaphosphate (Phytic acid). A pilot study. Cancer Lett. 75, 95-102. https://doi.org/10.1016/0304-3835(93)90193-D
  30. Wang, T. T. Y., N. Sathyamoorthy and J. M. Phang. 1996. Molecular effects of genistein on estrogen receptor mediated pathway. Carcinogenesis 17, 271-275. https://doi.org/10.1093/carcin/17.2.271
  31. William, J. P., S. E. Jordan, S. Barnes and H. Blair. 1998. Tyrosine kinase inhibitor effects on avian osteoclastic acid transport. Am. J. Clin. Nutr. 68S, 1369-1374.
  32. Witschi, H. and A. R. Kennedy. 1989. Modulation of lung tumor development in mice with the soybean derived bowmn-birk protease inhibitor. Carcinogenesis 10, 2275-2277. https://doi.org/10.1093/carcin/10.12.2275