Membrane Inlet Mass Spectrometer (MIMS) 시스템을 이용한 해수 및 퇴적물 공극수내 용존 메탄의 측정

Dissolved Methane Measurements in Seawater and Sediment Porewater Using Membrane Inlet Mass Spectrometer (MIMS) System

  • 안순모 (부산대학교 지구환경시스템학부) ;
  • 권지남 (부산대학교 지구환경시스템학부) ;
  • 임재현 (부산대학교 지구환경시스템학부) ;
  • 박윤정 (부경대학교 미생물학과) ;
  • 강동진 (서울대학교 지구환경과학부/해양연구소)
  • An, Soon-Mo (Division of Earth Environmental System/Marine Science Major, Pusan National University) ;
  • Kwon, Ji-Nam (Division of Earth Environmental System/Marine Science Major, Pusan National University) ;
  • Lim, Jea-Hyun (Division of Earth Environmental System/Marine Science Major, Pusan National University) ;
  • Park, Yun-Jung (Department of microbiology, Pukyung National University) ;
  • Kang, Dong-Jin (School of Earth & Environmental Sciences/Research Institute of Oceanography, Seoul National University)
  • 발행 : 2007.08.31

초록

MIMS 시스템은 액체 시료의 용존 가스 농도를 정확하게 측정하는데 이용되어 왔는데, 본 연구에서는 해수와 퇴적물 공극수에 존재하는 용존 메탄 농도를 정량화하는데 사용되었다. 측정의 정밀성을 파악하기 위하여, 여러 분압의 메탄 농도에 대해서 포화된 액체 시료를 준비하였으며 이를 MIMS 시스템으로 측정하였다. 측정된 값은 용존 기체의 포화 상수로부터 계산된 값과 잘 일치하였다. 측정의 표준 오차는 평균값의 $0.13{\sim}0.9%$ 정도였다. 이 시스템을 이용하여 한반도 남해안 인근 해수의 용존 메탄 농도를 측정한 결과, 용존 메탄의 깊이별 분포는 물리적인 요소가 좌우하고 있음을 알 수 있었다. MIMS system을 이용하여, 각 수괴 간의 미세한 용존 메탄 농도의 차이를 구분하여 살펴볼 수 있었다. 또 다른 실험에서는 MIMS 시스템의 inlet 부분을 탐침 형태로 제작하여 퇴적물 깊이에 따른 용존 메탄을 측정할 수 있었다.

Membrane inlet mass spectrometer (MIMS) has been used to accurately quantify dissolved gases in liquid samples. In this study, the MIMS system was applied to measure dissolved methane in seawater and sediment porewater. To evaluate the accuracy of the measurement, liquid samples saturated with different methane partial pressure were prepared and the methane concentrations were quantified with the MIMS system. The measured values correspond well with the expected values calculated from solubility constants. The standard error of the measurements were $0.13{\sim}0.9%$ of the mean values. The distribution of dissolved methane concentration in seawater of the South Sea of Korea revealed that the physical parameters primarily control the methane concentration in sea water. The MIMS system was effective to resolve the small dissolved methane difference among water masses. The probe type inlet in MIMS system was proven to be effective to measure porewater methane concentration.

키워드

참고문헌

  1. 최규훈 등, 2002. 무안지역을 중심으로 한 메탄의 장주기적 농도변화 특성 연구. 지구과학회지, 23(3): 280-293
  2. 홍성길, 1995. 대기온실기체의 증가와 기후변화의 가능성. 화학공학과 기술, 13(4): 354-360
  3. Aller, RC., 1980. Relationships of Tube-dwelling Benthos with sediment and overlying water chemistry. In Marine Benthic Dynamics, Tenore, K.R. and Coull, B.C. (eds.) Univ. S. Carolina Press. 285-310
  4. An, S. and Joye, S.B., 1997. An improved gas chromatographic method for measuring nitrogen, oxygen, argon and methane in gas or liquid samples. Marine Chemistry, 59(1-2): 63-70 https://doi.org/10.1016/S0304-4203(97)00072-8
  5. An, S., Gardner, W.S. and Kana, T.M., 2001. Simultaneous measurement of denitrification and nitrogen fixation using isotope pairing with membrane inlet mass spectrometer (MIMS) analysis. App. Env. Micro., 67(3): 1171-1178 https://doi.org/10.1128/AEM.67.3.1171-1178.2001
  6. Bange, H.W., 2006. Nitrous oxide and methane in European coastal waters. Estuarine Coastal and Shelf Science, 70(3): 361-374 https://doi.org/10.1016/j.ecss.2006.05.042
  7. Bange, H.W., Bartell UH, Rapsomanikis S. & Andreae MO. 1994. Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Global Biogeoch. Cycles 8: 465-480 https://doi.org/10.1029/94GB02181
  8. Benstead, J.,Lloyd D., 1994. Direct mass spectrometric measurement of gases in peat cores. FEMS Microbiology Ecology 13(3): 233-240 https://doi.org/10.1111/j.1574-6941.1994.tb00070.x
  9. Capone, D.G. and Kiene, R.P., 1988. Comparison of microbial dynamics in marine and freshwater sediments: Contrast in anaerobic carbon metabolism. Limnol. Oceanogr., 33: 725-749 https://doi.org/10.4319/lo.1988.33.4_part_2.0725
  10. Cicerone, R.J., Oremland, R.S., 1988. Biogeochemical aspects of atmosphere methane. Global Biogeoch. Cyclces, 2: 299-327 https://doi.org/10.1029/GB002i004p00299
  11. Damm, A. Mackensen, Budéus, G., Faber, E. and Hanfland, C., 2005. Pathways of methane in seawater: plume spreading in an Arctic shelf environment (SW-Spitsbergen). Continental Shelf Research, 25: 1453–1472
  12. Demeestere, K., J. Dewulf, B.D. Witte and H.V. Langenhove, 2007. Sample preparation for the analysis of volatile organic compounds in air and water matrices. Journal of Chromatography, 1153(1-2): 130-144 https://doi.org/10.1016/j.chroma.2007.03.109
  13. Frans-Jaco WA, van der Nat, J. Middelburg. 1998. Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris Aquatic Botany, 61(2): 95-110 https://doi.org/10.1016/S0304-3770(98)00072-2
  14. Hartnett, H.E., Seitzinger, S.P., 2003. High-resolution nitrogen gas profiles in sediment porewaters using a new membrane probe for membrane-inlet mass spectrometry. Marine Chemistry, 83: 23–30
  15. Jones and Mullholland, 1998. Influence of drainage basin topography and elevation on carbon dioxide and methane supersaturation of stream water. Biogeochemistry, 40: 57-72 https://doi.org/10.1023/A:1005914121280
  16. Kana, T.M., Darkangelo, C., Hunt M.D., Oldham, J.B., Bennett, G.E., Cornwell, J.C., 1994. Membrane inlet mass spectrometer for rapid high-precision determination of $N_2$, $O_2$, and Ar in environmental water samples. Anal. Chem., 66(23): 4166-4170 https://doi.org/10.1021/ac00095a009
  17. Kelley, C.A., Martens, C.S. and Ussler, III W., 1995. Methane dynamics across a tidally flooded riverbank margin. Limnology and Oceanography, 40: 1112-1129 https://doi.org/10.4319/lo.1995.40.6.1112
  18. Middelburg, J., Nieuwenhuize, Iversen, N., Hogh, N., H. De Wilde, Helder, W., Seifert, R. and Christof, O., 2002. Methane distribution in European tidal estuaries. Biogeochemistry, 59: 95–119
  19. Seifert, R., Delling, N., Richnow, H.H., Kempe, S., Hefter, J., Michaelis, W., 1999. Ethylene and methane in the upper water column of the subtropical Atlantic. Biogeochemistry, 44(1): 73-91
  20. Sheppard, S.K., Gray, N., Head, I.M., Lloyd, D., 2005. The impact of sludge amendment on gas dynamics in an upland soil: monitored by membrane inlet mass spectrometry. Bioresource Technology, 96: 1103-1115 https://doi.org/10.1016/j.biortech.2004.10.006
  21. Short, R.T., Fries, D.P., Kerr, M.L., Lembke, C.E., 2005. Underwater Mass Spectrometers for in situ chemical analysis of the hydrosphere. J. Am. Soc. Mass Spectrom., 12: 676-682 https://doi.org/10.1016/S1044-0305(01)00246-X
  22. Tortell, P.D., 2005. Dissolved gas measurements in oceanic waters made by membrane inlet mass spectrometry. Limnol. Oceanogr.: Methods, 3: 24-37 https://doi.org/10.4319/lom.2005.3.24
  23. Vrana, B., Mills, G.A., Allan, I.J., Dominiak, E., Svensson, K., Knutsson, J., Morrison, G., Greenwood, R., 2005. Passive sampling techniques for monitoring pollutants in water. Trends in Analytical Chemistry, 24(10): 845-868 https://doi.org/10.1016/j.trac.2005.06.006
  24. WMO(World Meteorological Organization), 2005. WMO WDCGG data summary. WDCGG No.29, WMO, 85pp
  25. Yamamoto S., Alcauskas, JB, Crozier, TE., 1976, Solubility of Methane in distilled Water and Seawater. Journal of Chemical Engineering Data. 21(1): 78-80 https://doi.org/10.1021/je60068a029