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Bayesian Hypothesis Testing for the Ratio of Two
Quantiles in Exponential Distributions

Sang Gil Kang? - Dal Ho Kim2 - Woo Dong Lee3)

Abstract

When X and Y have independent exponential distributions, we develop
a Bayesian testing procedure for the ratio of two quantiles under
reference prior. The noninformative prior such as reference prior is usually
improper which yields a calibration problem that makes the Bayes factor
to be defined up to a multiplicative constant. So we develop a Bayesian
testing procedure based on fractional Bayes factor and intrinsic Bayes
factor. We show that the posterior density under the reference prior is
proper and propose the Bayesian testing procedure for the ratio of two
guantiles using fractional Bayes factor and intrinsic Bayes factor.
Simulation study and a real data example are provided.

Keywords : Fractional Bayes Factor, Intrinsic Bayes Factor, Ratio of
Quantiles, Reference Prior.

1. Introduction

In Bayesian testing problem, the Bayes factor under proper priors or informative
priors have been very successful. However, limited information and time
constraints often require the use of noninformative priors. Since noninformative
priors such as Jeffreys’ prior or reference prior (Berger and Bernardo, 1989, 1992)
are typically improper so that such priors are only defined up to arbitrary
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constants which affects the values of Bayes factors. Spiegalhalter and Smith
(1982), O'Hagan (1995) and Berger and Pericchi (1996) have made efforts to
compensate for that arbitrariness.

Spiegalhalter and Smith (1982) used the device of imaginary training samples in
the context of linear model comparisons to choose the arbitrary constants. But the
choice of imaginary training sample depends on the models under comparison, and
so, there is no guarantee that the Bayes factor of Spiegalhalter and Smith (1982)
is coherent for multiple model comparisons. Berger and Pericchi (1996) introduced
the intrinsic Bayes factor using a data-splitting idea, which would eliminate the
arbitrariness of improper priors. O’'Hagan (1995) proposed the fractional Bayes
factor. For removing the arbitrariness he used to a portion of the likelihood with a
so—called the fraction b. These approaches have shown to be quite useful in many
statistical areas (Kang, Kim and Lee, 2005, 2006).

Comparison between two populations is an important problem in statistics and is
commonly used in practice. The populations are usually compared with respect to
their means to establish superiority of one population over the other or to check if
the two populations are equivalent. For example, two drug may be compared with
respect to their mean effects to determine the better one. Even though, comparing
two populations with respect to means is a common problem, there are situations
where one needs to compare the quantiles instead of their means (see Albers and
Lohnberg, 1984; Huang and Johnson, 2006).

For comparison of two quantiles, Albers and Lohnberg (1984) presented a
bio—medical problem where comparison between the p quantiles of two populations
arises. They provided an approximate distribution free confidence interval for the
difference of two quantiles. Bristol (1990) suggested a modification to Albers and
Lohnberg’s method. Guo and Krishnamoorthy (2005) proposed methods for interval
estimating and testing the difference between the quantiles of two normal
populations and two exponential popuations. Their methods are based on the
concepts of generalized p-value and generalized limit. On the other hand, Huang
and Johnson (2006) derived confidence regions for the ratio of quantiles from two
normal populations. They developed an exact confidence procedure when the ratio
of variances is known. And when the ratio of variances is unknown, they obtained
confidence intervals for the ratio of quantiles based on large sample methods.

However there is a little work in this problem from the viewpoint of objective
Bayesian framework. The present paper focuses on Bayesian testing for the ratio
of two quantiles in the exponential distributions. For dealing this problem, we use
the fractional Bayes factor (O’Hagan, 1995) and the intrinsic Bayes factor (Berger
and Pericchi, 1996).

The exponential distribution plays an important role in the field of reliability.
The reasons for using the exponential distribution assumption in reliability
applications can be found in the early work of Davis (1952), Epstein and Sobel
(1953), and others. Further justification, in the form of theoretical arguments to
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support the use of the exponential distribution as the failure law of complex
equipment, is presented in the book by Barlow and Proschan (1975) and Lawless
(2003).

The outline of the remaining sections is as follows. In Section 2, we introduce
the Bayesian hypothesis testing based on the Bayes factor. In Section 3, Using the
reference prior, we provide the Bayesian testing procedure based on the fractional
Bayes factor and intrinsic Bayes factor for testing the ratio of two quantiles. In
Section 4, simulation study and a real example are given.

2. Intrinsic and Fractional Bayes Factors

Hypotheses H,, H,,--, H, are under consideration with the data = (z;,2y, -,
z,) having probability density function f;(z|@;) under model H,i=1,2,-.q,
where the parameter vectors 0; are unknown. Let m,(0;) be the prior distribution
of model H;, and let p;, be the prior probabilities of model #;i=1,2,---,q. Then
the posterior probability that the model #H; is true is

P(H; | z)=

q pj -1
E_'Bji ) (1)
i=1Pi

where Bj; is the Bayes factor of model #; to model #; defined by

ffj(x 10,)m;(0,)d0; ()
G =) @)
/fi(:v 10)m(0)d, M@

The Bj; interpreted as the comparative support of the data for the model j to .
The computation of B; needs specification of the prior distribution m;(0.) and
7rj(9j). Usually, one can use the noninformative prior such as uniform prior,

Jeffreys prior or reference prior in Bayesian analysis. Denote it as va . The use of

noninformative priors 7 (+) in (2) causes the B, to contain unspecified

i
constants. To solve this problem, Berger and Pericchi (1996) proposed the intrinsic
Bayes factor and O'Hagan (1995) proposed the fractional Bayes factor.

One solution to this indeterminacy problem is to use part of the data as a
training sample. Let z(I) denote the part of the data to be so used and let z(—1)

be the remainder of the data, such that

O<mfv(x(l))< 0,i=1,",q. (3)



836 Sang Gil Kang - Dal Ho Kim - Woo Dong Lee

In view (3), the posteriors 72 (0. | (1)) are well defined. Now, consider the Bayes

factor, B (1), for the rest of the data z(—1), using =, (6, | (1)) as the priors:

f@ Fa(=1) 1 0,2 (0, | 2(1))do;

B ()= — ~ =By - BYx(1) @
/af(a:(—l) | 0,0 (0, 1 w(1)db,

Ji J

where

By = Bjjly(x) — mjVEI) and Bg(x(l)): %

m; (z)
are the Bayes factors that would be obtained for the full data = and training
samples z(1), respectively.

Berger and Pericchi (1996) proposed the use of a minimal training sample to
compute Bg(x(l )). Then, an average over all the possible minimal training samples

contained in the sample is computed. Thus the Arithmetic Intrinsic Bayes factor
(AIBF) of H; to H; is

| &
B =B Zl;ijv(x(l)) 5)

where L is the number of all possible minimal training samples. Also the Median
Intrinsic Bayes factor (MIBF) by Berger and Pericchi (1998) of H; to f; is

B"'=BY - ME[BY(z())], 6)

where MFE indicates the median, here to be taken over all the training sample
Bayes factors. So we can also calculate the posterior probability of H; using (1),
where Bj; is replaced by B;' and B)" from (5) and (6).

The fractional Bayes factor (FBF, O’Hagan, 1995) is hased on a similar intuition
to that behind the intrinsic Bayes factor but, instead of using part of the data to
turn noninformative priors into proper priors, it uses a fraction, b, of each
likelihood function, Z(0;)=f;(x | §,), with the remaining 1—b fraction of the
likelihood used for model discrimination. Then the fractional Bayes factor of model

H; versus H; is
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fL )do; m?(z)

= BY . ,
/L Dao, " mile)

J

and f;(z | 0,) is the likelihood function and b specifies a fraction of the likelihood

which is to be used as a prior density. He proposed three ways for the choice of
the fraction b. One common choice of b is b=m/n, where m is the size of the
minimal training sample, assuming that this number is uniquely defined. (see
O'Hagan (1995, 1997), and the discussion by Berger and Mortera in O'Hagan
(1995)).

3. Bayesian Testing Procedures

Let X be an exponential distribution with density function
10 Lol ] o
Y Y

where p >0 is the mean parameter. For any given 0 < p <1, the pth quantile of
X is given by — plog(l—p). Suppose that Xl,---,an denote independent random
samples from exponential distribution with mean g, and Yy,--, ¥, denote
independent random samples from exponential distribution with mean p,. Then the
joint probability density function is

_ Yoo, 2 Y
flay | pps)=p ™ eXP{ > —— E—}, (7)
i=1 M =1 He

where p; >0 and p, > 0. Also the p;th quantile of X; can be expressed as
n =—plog(l—p,;) and the poth quantile of ¥, can be expressed as
ny =— pylog (1 —p,). We want to test the hypotheses H, i1y < ny vs. Hy:my > 1.
Since 7; and 7m, are positive, the hypotheses H,:m <1y vs. Hy:nm >1ny is
equivalent to

H H
[{1:—2§c vs.H2z—2>c &)
Hq Hq

where c¢= log(1—p,)/log(1—p,). Our interest is to develop a Bayesian testing
procedure hased on the FBF, the AIBF and the MIBF for the hypotheses (8).
From the hypotheses (8), us/p, is our parameter of interest. Let
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s
91 — M_Q al’ld 92 — Mgnﬁrnz)/QTLZM(in‘FTLZ)/in.
1

With this orthogonal parametrization, the likelihood function of parameters (6,.0,)
from (7) is given by

— 2147y —2nn, Ny — 2mymy —ny
7 72

L(91,92) — 92n1+n2 exp |— 92(n1+n2) 91n1+n2 Exi_ 92(n1+n2) 91n1+n2 E'l/l (9)

=1 =1

From the likelihood (9), the reference prior is given by
7(0,,0,)cc 6] 05" (10)
and this reference prior is the unique second order matching prior (Ghosh and

Sun, 1997). From the likelihood function (9) and the reference prior (10), the
posterior distribution of 6, and 6, is given by

2 oy ; ——— M
w(0),0, | zy)eco” 10, —0," o Y e =0 91”1+”22yj'

—2nyn, —2mn, Ty —2nny —n,
exXp
=1 =1

Let 0, = piy/p; and 0, = u§”1+”2)/2"2u(2"1+"2)/2”1. Then the posterior distribution of g,

and py 1

n
- 171 T~ nNgT - I S y
W(MlaMQ | x,y)ocul ! Ho exp{ Z - E - }
i=1 M1 =1 M

So this posterior distribution is proper if n; =1 and ny, = 1.
3.1 Bayesian Testing Procedure based on the Fractional Bayes Factor

From the likelihood (9) and the reference prior (10), the element of the FBF
under A :6; <c is given by

m’;(x,y):ff L%6,,0, | z,y)m(0,,0,)d0,d0,
0 0

¢ Iblng +ny)l(ny +n,) _ o e
:/‘ [b(n, 2)(ny 2 Im1 1 E E n1+nz)d91

0 27117121917(”1 )
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The element of the FBF under H, :0, > ¢ gives as follows.

mg(g:,y):f f LY%0,,60, | z,y)m(0,,0,)d0,d6,
c 0

_ /‘00 F[b(n1+n2)](n1+n2 3

n1 — & b{n, +n,)
bb(n + ”2) b 1 Z] ; d9

Therefore the element Bs] of the FBF is given by

S, (x,
BQ]\l] 2( 1/) ’
51 (Ia )
where
¢ n,—1 < & —(n; +ny)
Sl(xvy):f 91 [912 E d9
0 i=1 =
and

Sg(x,y):f TRRITR STONE S RAITY
=1 =1

o

And the ratio of marginal densities with fraction b is

m}(z,y) S (2,y:b)
mg (:17,1/) 5 (Iay %b) ’

where

(z,y:b f g 91295 4 E bl gy

=1 =1

and

(@, y;b f 00 o, Ex +E “bmtnd g
=1 =1

o

Thus the FBF of H, versus H, is given hy
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Sy(zy) S (zy5b)

AR (1)

Note that the calculation of the FBF of M, versus [, requires one dimensional
integration.

3.2 Bayesian Testing Procedure based on the Intrinsic Bayes Factor

The element B;] of the AIBF and the MIBF is computed in the derivation of
the FBF. So using minimal training sample, we only calculate the marginal
densities under H, and H,, respectively. The marginal density of (X, Yj) 1s finite
for all 1 <4< n;,1 <j<n, under each hypothesis. Thus we conclude that any
training sample of size two is a minimal training sample.

The marginal density m]" (xi,yj) under A, :0; < ¢ is given by

1’1/] f f f z’yj | 91792) (91792)d9 d91

= 2c [yj(cxi+yj)] 17

where 1<i<mn;,1<j<mn, And the marginal density mJ (z,y;) under
H,:0, > c is given hy

mév(xi,yj) = f f f(xpyj | 91792 )7T<91792 )d92d91
c 0
= 2z; '(ex;+y;) ',
where 1 < ¢ < n;,1 < j < n, Therefore the AIBF of H, versus f; is given by

(2 Mo c:L,

Uy

l*lj*l yj

(12)

where L =mn;n,. And the MIBF of H, versus f, is given by

Cx,;

- } . (13)
Yj

52 (I7U)

BM]:
2 Sl (Ia,l/)

Note that the calculations of the AIBF and the MIBF of A, versus f, require
one dimensional integration.
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4. Numerical Studies

In order to assess the Bayesian testing procedures, we evaluate the posterior
probability for several configurations (p;,ps), (tt1s415) and (n;,n,). In particular, for
tixed (uy.115) we take 5,000 independent random samples of X and Y from the
model (7). In our simulation, we examine the cases when p; =0.5, p, =0.1,0.3
0.5,0.7,0.9, (py.p2) = (5,5),(5,10),(10,5) and (n;,n,)=(5,5),(5,10),(10,10),(10,15).

The posterior probabilities of H; being true are computed assuming equal prior
probabilities. Table 1 shows the results of the averages and the standard
deviations in parentheses of posterior probabilities. From the Table 1, the FBF and
the MIBF give fairly reasonable answers for all configurations, (p;.p,) and
(py5p5). Also the FBF and the MIBF give a similar behavior for all sample sizes.
However the AIBF is tending to favor the hypothesis #,. This is because the
ratio of the marginal density value is unstable when the value of minimal training
sample 1s extremely small value in denominator and large value in nominator or
vice versa.

Also for the unequal sample sizes, the FBF favors the hypothesis H, than the
MIBF from the case (p;,p,)=1(0.5,0.5) and (uy,15)=(5.5). Thus the MIBF gives
fairly reasonable results.
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Table 1: The averages and the standard deviations in parentheses of
posterior probabilities

(115 115) (p1,py) (ny,my) PF(H1 | z,9) PA](H1 | z,y) PM[(H1 | z,9)

5 5 0.5, 0.1 5 5 0.948 (0.079) 0.864 (0.186) 0.945 (0.085)
5, 10 0.975 (0.063) 0.936 (0.142) 0.979 (0.057)

10, 10 0.995 (0.018) 0.978 (0.073) 0.995 (0.019)

10, 15 0.998 (0.015) 0.990 (0.057) 0.998 (0.014)

0.5, 0.3 5 5 0.713 (0.193) 0.513 (0.267) 0.710 (0.204)
5, 10 0.723 (0.220) 0.542 (0.291) 0.755 (0.210)

10, 10 0.811 (0.182) 0.607 (0.285) 0.810 (0.184)

10, 15 0.823 (0.187) 0.642 (0.288) 0.838 (0.178)

0.5, 05 5 5 0.504 (0.220) 0.312 (0.225) 0.505 (0.231)
5, 10 0.458 (0.229) 0.284 (0.223) 0.509 (0.233)

10, 10 0.504 (0.243) 0.278 (0.231) 0.504 (0.247)

10, 15 0.476 (0.249) 0.266 (0.231) 0.504 (0.252)

0.5, 0.7 5 5 0.322 (0.201) 0.178 (0.165) 0.324 (0.210)
5, 10 0.249 (0.184) 0.135 (0.138) 0.295 (0.202)

10, 10 0.232 (0.196) 0.103 (0.129) 0.234 (0.201)

10, 15 0.187 (0.175) 0.081 (0.111) 0.209 (0.189)

0.5, 09 5 5 0.155 (0.151) 0.079 (0.104) 0.159 (0.161)
5, 10 0.091 (0.102) 0.046 (0.064) 0.121 (0.125)

10, 10 0.053 (0.089) 0.020 (0.045) 0.054 (0.092)

10, 15 0.032 (0.060) 0.012 (0.028) 0.038 (0.069)

5, 10 0.5, 0.1 5 5 0.842 (0.146) 0.681 (0.255) 0.839 (0.155)
5, 10 0.881 (0.154) 0.760 (0.260) 0.896 (0.143)

10, 10 0.946 (0.091) 0.844 (0.211) 0.945 (0.093)

10, 15 0.961 (0.081) 0.886 (0.189) 0.965 (0.075)

0.5, 0.3 5 5 0.492 (0.217) 0.300 (0.219) 0.492 (0.229)
5, 10 0.439 (0.234) 0.266 (0.219) 0.488 (0.239)

10, 10 0.481 (0.243) 0.260 (0.224) 0.482 (0.247)

10, 15 0.458 (0.247) 0.251 (0.221) 0.487 (0.249)

0.5, 05 5 5 0.277 (0.190) 0.149 (0.146) 0.281 (0.200)
5, 10 0.204 (0.167) 0.108 (0.121) 0.248 (0.188)

10, 10 0.179 (0.178) 0.076 (0.110) 0.181 (0.182)

10, 15 0.132 (0.145) 0.054 (0.081) 0.149 (0.159)

0.5, 0.7 5 5 0.147 (0.143) 0.074 (0.097) 0.151 (0.152)
5, 10 0.084 (0.094) 0.042 (0.059) 0.112 (0.119)

10, 10 0.048 (0.085) 0.018 (0.043) 0.048 (0.088)

10, 15 0.026 (0.051) 0.010 (0.026) 0.031 (0.059)

0.5, 09 5 5 0.052 (0.082) 0.025 (0.049) 0.055 (0.089)
5, 10 0.020 (0.036) 0.010 (0.021) 0.030 (0.051)

10, 10 0.005 (0.018) 0.002 (0.008) 0.005 (0.019)

10, 15 0.002 (0.006) 0.001 (0.002) 0.002 (0.008)

Example. The following
successive failures of the

64.125 and 82.562, respectively.

data, given by Proschan (1963), are time intervals of
air conditioning equipment in Boeing 720 aircraft. For
aircraft 1, the Kolmogorov-Smirmov test statistic is 0.1143 and its p-value is 0.88.
For aircraft 2, the Kolmogorov—-Smirnov test statistic is 0.1791 and its p-value is
0.62. So we can assume that the time between successive failures for each plane
1s exponentially distributed. The sample means for aircraft 1 and aircraft 2 are
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Aircraft 1 : 50 44 102 72 22 39 3 15 197 188 79 & 46 5H 5
36 22 139 210 97 30 23 13 14
Aircraft 2 : 102 209 14 57 54 32 67 59 134 152 27 14 230 66
61 34
Table 1 (Continued)
(115 115) (p1,py) (ny,my) PF(H1 | z,9) PA](H1 | z,y) PM[(H1 | z,9)
10, 5 0.5, 0.1 5 5 0.987 (0.033) 0.956 (0.107) 0.986 (0.038)
5, 10 0.997 (0.019) 0.991 (0.053) 0.998 (0.015)
10, 10 1.000 (0.003) 0.999 (0.012) 1.000 (0.003)
10, 15 1.000 (0.000) 1.000 (0.003) 1.000 (0.000)
0.5, 0.3 5 5 0.875 (0.132) 0.729 (0.250) 0.870 (0.143)
5, 10 0.914 (0.130) 0.814 (0.237) 0.927 (0.119)
10, 10 0.968 (0.063) 0.894 (0.176) 0.966 (0.067)
10, 15 0.979 (0.054) 0.932 (0.147) 0.981 (0.051)
0.5, 05 5 5 0.719 (0.194) 0.525 (0.265) 0.715 (0.203)
5, 10 0.731 (0.217) 0.551 (0.289) 0.764 (0.205)
10, 10 0.823 (0.173) 0.623 (0.281) 0.821 (0.177)
10, 15 0.837 (0.176) 0.660 (0.284) 0.851 (0.168)
0.5, 0.7 5 5 0.547 (0.215) 0.347 (0.235) 0.545 (0.227)
5, 10 0.514 (0.237) 0.331 (0.242) 0.560 (0.237)
10, 10 0.580 (0.240) 0.343 (0.254) 0.579 (0.244)
10, 15 0.551 (0.248) 0.326 (0.251) 0.578 (0.248)
0.5, 09 5 5 0.339 (0.205) 0.188 (0.173) 0.341 (0.214)
5, 10 0.263 (0.188) 0.145 (0.145) 0.312 (0.205)
10, 10 0.245 (0.203) 0.110 (0.135) 0.246 (0.206)
10, 15 0.204 (0.186) 0.089 (0.118) 0.227 (0.198)

Table 2 : The Bayes Factors and Posterior Probabilities

(p1:ps) (05, 02) | (05, 03) |05, 0416) (0.5 05) | (0.5 0.7)
c 3.106 1.943 1.289 1.000 0.976
p-value 0.9950 0.8897 0.4925 0.2103 0.0006
BFY; 0.0099 0.1576 0.8809 24972 66.6921
PR | zy) 0.9902 0.8639 0.5317 0.2859 0.0148
BFsY 0.0215 0.3330 1.8348 0.1876 140.1275
PYH | z.y) 0.9789 0.7502 0.3528 0.1616 0.0071
BR 0.0107 0.1652 0.9101 2.9731 69.5040
P, | z.y) 0.9894 0.8582 0.5235 0.2799 0.0142

The values of the Bayes factor and the posterior probability of H, versus H;

are given Table 2. We assume that the prior probabilities are equal. Also the p
-values based on F-test (see Guo and Krishnamoorthy, 2005) are given Table 2.
From the results of Table 2, the FBF and the MIBF give fairly reasonable
answers for the values of p; and p,. But the p-value does not give reasonable

answers for some cases and favors the hypothesis ;. Also the AIBF is tending
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to favor the hypothesis H,.
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