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Kernel Machine for Poisson Regression!)
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Abstract

A kernel machine is proposed as an estimating procedure for the linear
and nonlinear Poisson regression, which is based on the penalized
negative log-likelihood. The proposed kernel machine provides the estimate
of the mean function of the response variable, where the canonical
parameter 1s related to the input vector in a nonlinear form. The
generalized cross validation (GCV) function of MSE-type is introduced to
determine hyperparameters which affect the performance of the machine.
Experimental results are then presented which indicate the performance of
the proposed machine.
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1. Introduction

Poisson regression is widely used to analyze the event count data (Vermunt,
1996). It can be used to model the number of occurrences of an event of interest
or the rate of occurrence of an event of interest, as a function of some input
variables. A nonparametric estimation for the canonical parameter (logarithm of the
mean function) of Poisson process based on penalized likelihood smoothing spline
models was proposed by O’Sullivan et al.(1986). When canonical parameter is of a
linear form, it is known that the generalized linear model with a Poisson likelihood
is useful to Poisson process (McCullagh and Nelder, 1983). But the linear
assumption on the canonical parameter is strict in some cases. Various parametric
approaches are proposed by Wei(1998) to attain more flexibility than a simple
linear model. Yuan(2005) studied smoothing spline models for nonparametric
Poisson regression along with the adaptive choice of smoothing parameters.
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In this paper we propose a kernel machine for Poisson regression to obtain the
estimate of the mean function of response variable. For the easy selection of
appropriate hyperparameters to achieve high generalization performance, we
propose the generalized cross validation (GCV) function of MSE-type, which does
not use the log-likelithood of the Poisson distribution. The rest of this paper is
organized as follows. In Section 2 we propose a kernel machine for Poisson
regression, which is based on the penalized negative log-likelihood. In Section 3
we propose GCV function of MSE-type for the model selection. In Section 4 we
perform the numerical studies through an example. In Section 5 we give the
conclusion.

2. Poisson Regression via Kernel Machine

In Poisson regression it is assumed that the response variable y; € {1,2,--},
number of occurrences of an event, has a Poisson distribution given the input
vector z; © R including a constant 1,
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The negative log-likelihood of the given data set can be expressed as (a

constant term is omitted)
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1 n
E(M)ZgE(u(xi)—yilogu(:vi)).
i=1
We write the canonical parameter(logarithm of w(z;) ) as 7(z;), then the
negative log-likelihood can reexpressed as
1 (z,
ln)= EZ(@” ) .%'77(%') ).
i=1
The canonical parameter given x; is estimated by a linear model,
n(z;) =w'¢(z;), conducted in a high dimensional feature space. Here the feature

mapping function ¢( -+ ): R > R 9 maps the input space to the higher dimensional
feature space where the dimension d; is defined in an implicit way. It suffices to
know and use K(z;z;)= ¢(z;)d(x;) instead of defining ¢( - ) explicitly. Note that
the identity map ¢ leads nonlinear model to linear model. The kernel function

used here is the Gaussian kernel,
1

- lz,— I]-H 2
K(Ii7xj): € 7 9 i?jzlv"'vn,
where ¢° is the kernel parameter.
Then the estimate of canonical parameter 7 is obtained by minimizing the

penalized negative log-likelihood,
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Uw)= LX}(emld)(ﬂ”)— y; w' o(x;) )—1—A w2
n ;= 2
where A is a regularization parameter which controls the trade—off between the
goodness-of-fit on the data and the complexity of 7. The representation theorem
(Kimeldorf and Wahba, 1971) guarantees the minimizer of the penalized negative
log-likelihood to be n(z;)=k/a for some nx1 vector a, where k; is the ith
column of the nxn kernel matrix K with elements K(z,,z;), k.l=1,--,n.
Now the penalized negative log-likelihood (4) becomes
L (a)= LE}(ek’fo‘— vk a)+ Ao/l(oz,
n /=1 2
By minimizing the penalized negative log-likelihood (5) we obtain the estimator
of parameter vector a using Newton-Raphson method, which is not given in a
explicit form. At the (t+1)th iteration, the parameter vector is estimated as
follows:
V=W gl G,
where H= WK+ n\l,, G=y— gV —naa? W= diag(p'"). Here p'¥ is the
ko

]

nx1 vector with elements u(z;)=e and y= (y;,--,y,)". With the optimal
values of «, the predicted mean function given the input vector z, is obtained as
follows:

lwy)= ",
where ky= (K(zy,xy), - K(z,.z,)).

3. GCV function of MSE-type

The functional structure of the kernel machine for Poisson regression is
characterized by hyperparameters which are the regularization parameter A and the
kernel parameter o°.

For the model selection of the kernel machine, we define the leave-one-out
cross validation(CV) function of MSE-type for a set of hyperparameters, 0, as
follows:

3 ()~ 1, (@) 2,

Vo) = %H
where 7,(z;) is the estimate of n(z;) from full data and 7, ? (z,) is the estimate
of n(z;) obtained from data without the ith observation. Since for each candidate
of hyperparameter sets, 7,7\9(71-) (z;)'s should be evaluated, selecting parameters

using CV function is computationally formidable. By leaving-out-one lemma
(Kimeldorf and Wahba, 1971),
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Then the ordinary cross validation(OCV) function can be obtained as

n (z;) 2 - n (z;) 2
)  y—e” _Lly ong (x;) (y;—e™"")
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2y; 1_659(%)8770(:171-)
Yy,

where s;;=0n,(z;)/0y; is the (i,j)th element of § which is the matrix such

that ny= K H '(y+ const)= S(y+ const). Replacing s;; by tr(S)/n and

L o
ocv(e :%E ol (11)

oy; 1_en9(zi)$

“

¢ () sy by tr(VS)/n, the generalized cross validation(GCV) function can be

obtained as

) e,

n(n—tr(VS)) ’

where V is a diagonal matrix with the (i,i)th entry e (Ii),

Gev(o) =

4. Numerical Studies

We illustrate the performance of the kernel machine for Poisson regression
through the simulated data on the nonlinear case. 100 data sets are generated to
present the estimation performance of the proposed machine. Each data set
consists of 40 z's and 40 y's. Here z's are randomly generated from U(0,1) and
y’s are generated from a Poisson distribution with the canonical parameter
n(x;)= 2+ 2sin(27z;). The canonical parameter given z; can be modelled as
n(z;)=k'a with k= (K(z,.xz;), . K(z,5,2;)) and z,= (1,2;) for i=1,--,40.
Note that we use Gaussian kernel function in this example.

Figure 1(Left) shows the values of CV function(solid line), OCV function(dashed
line), and GCV function(dotted line) for one of 100 data sets. We found that the
proposed machine is not much sensitive to the choice of the regularization
parameter but sensitive to the kernel parameter and that the values of CV
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function and OCV function are very close with A =10 for each data set. In Figure
1(Left) we can see that CV function and GCV function show similar behaviors.

i
g

1 1 | | 1 1 D l 1 1 1

1 1 1
0 2 4 b B 10 12 0 01 02 03 04 05 06 07 DB 09
sig? X

Figure 1. The values of CV function(solid line), OCV function(dashed line) and

GCV function(dotted line) on various values of kernel parameter o with A= 10
(Left). Mean function imposed on the scatter plot of one of 100 data sets (Right).

To illustrate the estimation performance of the kernel machine for Poisson
regression, the fraction of variance unexplained (FVU) is used as the estimation
performance measure, which is introduced by Roosen and Hastie(1994) as follows:

n

Y2 (nlr) = pla))?

=1

3 (ule) = P

FVU=

)

S
where p= EEM(%’)'
=1

Figure 1(Right) shows the true mean function(solid line) and the estimated mean
function(dashed line) imposed on the scatter plot of one of 100 data sets. In the
figure we can see that the estimated mean function behaves similarly as the true
mean function does. From 100 data sets we obtain the average of FVUs as 0.0305,
which indicates that the proposed machine provide satisfying results.
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5. Conclusions

In this paper, we have dealt with estimating the mean function of Poisson
regression by the kernel machine and have provided GCV function for choosing
regularization and kernel parameters which affect the performance of the proposed
machine. Through the example we have showed that the proposed machine derives
the satisfying results and has an advantage of an easy model selection method
based on GCV technique.
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