Component Analysis and Study on Anti-elastase Activity of Equisetum arvense Extracts(II)

쇠뜨기 추출물의 성분 분석과 엘라스타제 활성 저해 효과 연구(II)

  • Park, Soo-Nam (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology) ;
  • Yang, Hee-Jung (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology)
  • 박수남 (서울산업대학교 정밀화학과) ;
  • 양희정 (서울산업대학교 정밀화학과)
  • Published : 2007.09.30

Abstract

In the previous study, we reported the antioxidative activity of Equisetum arvense extracts. In this study, its inhibitory effect on elastase and components were investigated. Aglycone fractions obtained from the deglycosylation reaction of ethylacetate fraction among the Equisetum arvense extracts, showed 4 bands and 4 peaks in TLC and HPLC experiments, respectively. Four components were identified as luteolin(composition ratio, 19.12%), quercetin(12.87), apigenin(15.81) and kaempferol(52.20). TLC chromatogram of ethylacetate fraction of Equisetum arvense extract revealed 7 bands and HPLC chromatogram showed 8 peaks, which were identified as kaempferol-3,7-O-diglucoside(composition ratio, 15.74%), luteolin-5-O-glucoside(galuteolin, 11.91), apigenin-5-O-glucoside(12.91), kaempferol-3-O-glucoside(astragalin, 27.94), quercetin-glycoside(10.81, structure was not determined), kaempferol-glycoside (12.33, structure was not determined), luteolin(3.72) and apigenin(4.62) in the order of elution time. The inhibitory effect of aglycone fraction on elastase($IC_{50}$, $9.8{\mu}g/mL$) was very high. But ethylacetate fraction(flavonoid glycosides) rarely exhibited the inhibitory activity on elastase. Combined with the previous results of the antioxidative activity of Equisetum arvense extracts, it is concluded that the inhibitory activity on elastase of the aglycone fraction could be applicable to new functional cosmetics for smoothing wrinkles.

선구 연구로부터 저자들은 쇠뜨기 추출물의 항산화 작용에 대한 결과를 이미 보고하였으며, 본 연구에서는 이들의 성분 분석과 elastase 저해활성에 관한 조사를 수행하였다. 쇠뜨기 추출물 중 ethylacetate 분획의 당 제거 반응 후 얻어진 aglycone 분획은 TLC 및 HPLC 실험에서 각각 4개의 띠와 피이크로 분리되었으며, 분리된 4가지 성분은 luteolin, quercetin, apigenin 및 kaempferol이었다. 그리고, 그들의 성분비는 각각 19.12%, 12.87%, 15.81%, 52.20%로 kaempferol의 함량이 가장 큰 것으로 나타났다. 쇠뜨기 추출물의 ethylacetate 분획의 TLC 크로마토그램은 7개의 띠로 분리되었고, HPLC 크로마토그램은 8개의 피이크를 보여주었다. TLC와 HPLC의 띠와 피이크를 확인한 결과, HPLC의 8개의 피이크는 용리순서로 kaempferol-3,7-O-diglucoside(조성비, 15.74%), luteolin-5-O-glucoside(galuteolin, 11.91), apigenin-5-O-glucoside(12.91), kaempferol-3-O-glucoside(astragalin, 27.94), quercetin-glycoside (10.81, 구조 미확인), kaempferol-glycoside(12.33, 구조 미확인), luteolin(3.72) 및 apigenin(4.62)으로 확인되었다. Aglycone 분획은 elastase 저해활성($IC_{50}$)이 9.8 ${\mu}g/mL$로 매우 큰 활성을 나타내었다. 이에 비해 ethylacete 분획(플라보노이드 배당체)은 elastase 저해 활성이 거의 없었다. 이상의 결과들은 이미 보고된 쇠뜨기 추출물의 항산화 작용과 더불어 쇠뜨기 성분에 대한 분석과 ethylacetate 분획의 당 제거 실험 후 얻어진 aglycone 분획의 큰 elastase 저해활성으로부터 주름개선 기능성 화장품원료로서 응용 가능성이 있음을 시사한다.

Keywords

References

  1. D. J. Mabberly, A portable dictionary of the higher plants, Cambridge Univ., Cambridge, England (1990)
  2. H. K. Park, Y. S. Lim, H. O. lin, and H. C. Shin, Taxonomy of genus Euisetum L. (equisetaceae) in Korea, Kor. J. Plant Tax., 33, 17 (2003)
  3. P. Ody and D. Kindersley, In the complete medicinal herbal, DK Publishing, New York (1993)
  4. D. Hoffman, In the new holistic herbal, Element, Shaftesbury (1990)
  5. S. Mineo, M. Takayasu, H. Kaori, T. Yoshiro, S. Taisuke, and M. Masaaki, Studies on bathing agent: antiinflammatory effect of bathing agent which used for skin disease, Slwyakugaku Zasshi, 47, 1 (1993)
  6. S. N. Park and H. J. Yang, Evaluation of antioxidant potential of extract/fractions of Equisetum arvense (I), J. Soc. Gosmet. Scientists Korea, 33(2), 61 (2007)
  7. S. H. Kim, G. W. Nam, B. Y. Kang, H. K. Lee, S. J. Moon, and I. S. Chang, The effect of kaempferol, quercetin on hyaluronan synthesis stimulation in human keratinocytes (HaCaT), J. Soc. Cosmet. Scientists Korea, 33(1), 97 (2005)
  8. R. Fleischmajor, J. S. Perlish, and R. 1. Bashey, Human dermal glucosaminoglycans and aging, Biochem Biophys. Acta, 279(2), 265 (1972) https://doi.org/10.1016/0304-4165(72)90142-0
  9. M. O. Longas, C. S. Russell, and X. Y. He, Evidence for structural changes in dermatan sulfate and hyaluronic acid with aging, Carbohydr. Res., 159(1), 127 (1987) https://doi.org/10.1016/S0008-6215(00)90010-7
  10. I. Ghersetich, T. Lotti, G. Campanile, C. Grappne, and G. Dini, Hyaluronic acid in cutaneous intrinsic aging, Int. J. Dermatol., 33(2), 119 (1994) https://doi.org/10.1111/j.1365-4362.1994.tb01540.x
  11. E. U. Graefe and M. Veit, Urinary metabolites of flavonoids and hydroxycinnamic acids in humans after application of a crude extract from Equisetum arvense, Phytomedicine, 6(4), 239 (1999) https://doi.org/10.1016/S0944-7113(99)80015-4
  12. H. Oh, D. H. Kim, J. H. Cho, and Y. C. Kim, Hepatoprotective and free radical scavenging activities of phenolic petrosins and flavonoids isolated from Equisetum arvense, J. Ethnopharmacology, 95, 421 (2004) https://doi.org/10.1016/j.jep.2004.08.015
  13. A. I. Syrchina, V. G. Gorokhova, N. A. Trukavkina, V. A. Babkin, and M. G. Voronkov, Flavonoid glycosides from sporogenous stems of Equisetum arvense, Khim Pror. Soedin., 3, 334 (1980)