DOI QR코드

DOI QR Code

Microwave Dielectric Properties of 0.95Ca0.85Nd0.1TiO3−0.05LnAlO3 (Ln=Sm, Dy, Er) Ceramics

  • Kim, Eung-Soo (Department of Materials Engineering, Kyonggi University) ;
  • Jeon, Chang-Jun (Department of Materials Engineering, Kyonggi University)
  • Published : 2007.10.31

Abstract

Microwave dielectric properties of $0.95 Ca_{0.85}Nd_{0.1}TiO_3-0.05LnAlO_3$ (Ln=Sm, DH, Er) were investigated as a function of sintering temperature and lanthanide ion type. A single perovskite phase with an orthorhombic structure was obtained throughout the entire range of composition. The dielectric constant (K) was dependent upon the dielectric polarizabilities and the B-site bond valence in the $ABO_3$ perovskite structure. The quality factor (Qf) of the specimens with $ErAlO_3$ was smaller than those with $SmAlO_3\;and/or\;DyAlO_3$ due to the smaller grain size. The temperature coefficient of resonant frequency (TCF) could be controlled from $107.28ppm/^{\circ}C$ at Ln=Sm to $87.23ppm/^{\circ}C$ at Ln=Er due to the changes of B-site bond valence in the $ABO_3$ perovskite structure.

Keywords

References

  1. M. Yoshida, N. Hara, T. Takada, and A. Seki, 'Structure and Dielectric Properties of $(Ca_{1-x}Nd_{2x/3})TiO_3$,' Jpn. J. Appl. Phys., 36 [11] 6818-23 (1997) https://doi.org/10.1143/JJAP.36.6818
  2. R. C. Kell, A. C. Greenham, and G. C. E. Olds, 'High-Permittivity Temperature-Stable Ceramic Dielectrics with Low Microwave Loss,' J. Am. Ceram. Soc., 56 [7] 352-54 (1973) https://doi.org/10.1111/j.1151-2916.1973.tb12684.x
  3. A. M. Glager, 'Simple Ways of Determining Perovskite Structures,' Acta Cryst., A31 756-62 (1975) https://doi.org/10.1107/S0567739475001635
  4. R. D. Shannon, 'Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,' Acta Cryst., A32 751-67 (1976) https://doi.org/10.1107/S0567739476001551
  5. I. M. Reaney, E. L. Colla, and N. Setter, 'Dielectric and Structural Characteristics of Ba- and Sr-based Complex Perovskites as a Function of Tolerance Factor,' Jpn. J. Appl. Phys., 33 [7A] 3984-90 (1994) https://doi.org/10.1143/JJAP.33.3984
  6. H. S. Park, K. H. Yoon, and E. S. Kim, 'Relationship between the Bond Valence and the Temperature Coefficient of the Resonant Frequency in the Complex Perovskite $(Pb_{1-x}Ca_x)[Fe_{0.5}(Nb_{1-y}Ta_y)_{0.5}]O_3$,' J. Am. Ceram. Soc., 84 [1] 99-103 (2001) https://doi.org/10.1111/j.1151-2916.2001.tb00614.x
  7. N. B. Brese and M. O'Keefe, 'Bond-Valence Parameters for Solids,' Acta Cryst., B47 192-97 (1991) https://doi.org/10.1107/S0108768190011041
  8. F. Izumi and T. Ikeda, 'A Rietveld-Analysis Programm RIETAN-98 and its Applications to Zeolites,' Mater. Sci. Forum, 321-324 198-203 (2000) https://doi.org/10.4028/www.scientific.net/MSF.321-324.198
  9. B. W. Hakki and P. D. Coleman, 'A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,' IRE Trans. Microwave Theory Tech., 8 402-10 (1960) https://doi.org/10.1109/TMTT.1960.1124749
  10. T. Nishikawa, K. Wakino, H. Tamura, H. Tanaka, and Y. Ishikawa, 'Precise Measurement Method for Temperature Coefficient of Microwave Dielectric Resonator Material,' IEEE MTT-S Int. Microwave Symp. Dig., 277-80 (1987)
  11. I. D. Brown and D. Altermatt, 'Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database,' Acta Cryst., B41 244-47 (1985) https://doi.org/10.1107/S0108768185002063
  12. R. D. Shannon, 'Dielectric Polarizabilities of Ions in Oxides and Fluorides,' J. Appl. Phys., 73 348-66 (1993) https://doi.org/10.1063/1.353856