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1. Introduction However, the typical feature of many nowadays
commumnication networks is that customers arrive in
Various queueing systems have been studied for batches, but arrival of customers is not instantaneous
traffic control to support traffic streams with but is distributed in time. The first customer of a
different traffic characteristics in telecommunication batch arrives at the batch arrival epoch while the rest
networks. Queueing systems suit for description of a of customers arrive one-by-one in random intervals.
variety of real-life processes, in particular, description The batch size is random and it may be not
of operation of telecommunication networks and they known a priori at the batch arrival epoch. Such a
have got a lot of attention in probabilistic literature. situation is typical, eg., in modeling transmission of
Important class of queueing systems assumes that video and multimedia information. This situation is
customers arrive into the system in batches. It is also discussed in [8] with respect to the modeling
usually assumed that, at a batch arrival epoch, all Scheme of Alternative Packet Overflow Routing in
customers of this batch amrive into the system IP networks.
simultaneously.
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In [8], performance measures of this scheme of
routing in IP networks are evaluated by means of
computer simulation. Analogous queueing model
arises in modeling queries processing in data bases
where, besides the CPU, some additional threads or
connections should be provided to start the query
processing.

In the paper ([3], [4] and [5]), the Markovian
queueing model with a finite buffer that suits for
performance evaluation of this routing scheme as
well of other real life systems with time distributed
arrival of customers in a batch is considered. To the
best of our knowledge, such kind of queueing models
was not considered and investigated in literature
previously. In 1[5}, the problem of the system
throughput maximization subject to restriction of loss
probability for customers from accepted batches is
solved.

In the present paper, we extend analysis given in
[5] to the case of the system with infinite buffer. In
this case, customers from accepted batch never are
lost. So, we may solve the problem of the system
throughput maximization subject to restricion of
average sojourn time for accepted batches.

The rest of the paper is orgamized as follows. In
section 2, the model is described. Stability condition
is derived and the steady state joint distribution of
the number of batches and customers in the system
is analyzed in section 3. Section 4 is devoted to
consideration of the batch sojourn time distribution.
Section 5 contains numerical illustrations and section
6 concludes the paper.

2. Mathematical Model

We consider a single server queueing system with
an infinite buffer. Service time has exponential
distribution with parameter. The customers arrive to
the system in batches. Batches arrive into the
system according to a stationary Poisson arrival
process with intensity 2.

Following [7], we assume that admission of
batches (they are called flows in [7] and called
threads, in different
real-life applications) is restricted by means of

connections, windows, etc.

tokens. The total number of available tokens is
assumed to be K,K 21 Further we consider the

number K as control parameter and can solve the
corresponding optimization problem. If there is no token
available at a batch arrival epoch the batch is rejected.

It leaves the system forever. If the number of
available tokens at the batch arrival epoch is positive
this batch is admitted into the system and the
number of available tokens decreases by one. We
assume that one customer of a batch arrives at the
batch arrival epoch and if it meets free server, it
occupies the server and is processed.

If the server is busy, the customer moves to a
pbuffer and later it is picked up for the service
according to the First Came First Served discipline.

After admission of the batch, the next customer of
this batch can arrive into the system in exponentially
distributed with parameter 7 time. The number of
customers in the batch has geometrical distribution

with parameter €:0<60 <1 i e probability that the

batch consists of k& customers is equal to

-1 (1-@),k>1

Mean size of the batch is equal to 1-6)". If the
exponentially distributed with parameter 7 time
since arrival of the previous customer of a batch
expires and new customer does not arrive, it means
that the arrival of the batch is fished. The token,
which was obtained by this batch on arrival, is
returned into the pool of available tokens.

The customers of this batch, which stay in the
system at the epoch of returning the token, should
be completely processed by the system. When the
last customer is served, sojourn time of the batch in
the system is considered finished It is intuitively
clear that this mechanism of arrivals restriction by
means of tokens is reasonable.

At the expense of rejecting some batches, it allows
to decrease sojourn time and jitter for admitted
batches. It is important in modeling real-life systems
because quality of transmission of accepted information
units should satisfy imposed requirements of Quality
of Service.

Note, that situation when the new batch is
rejected while the system is empty of customers is



theoretically possible. Probably, this is shortcoming
of the considered scheme. But the mechanism of
tokens creates better conditions (shorter delay and
smaller jitter) for transmission of customers from the
accepted batches.

Quantitative analysis of advantages and shortcomings
of this mechanism requires calculation of the man
performance measures of the system under the fixed
value K of tokens in the system.

These measures can be calculated basing in the
knowledge of stationary distribution of the random
process describing dynamics of the system under study.

3. Joint Distribution of the Number of
Batches and Customers in the System

Let the number K of tokens be fixed, % be the
total mumber of customers in the system at epoch

6,120,020 gnd kK be the number of batches
having token for admission to the system at epoch
1120,k =0,K

It is obvious that the two-dimensional process
& =1k}, 120 ig the irreducible regular continuous
time Markov chain.

Introduce the following notation:

- 7=y (1-6). 7" =19,
- Cy=diag{0,1,-,K} {e, the diagonal matrix with
the diagonal entries {0,1---,K}
- ] is identity matrix, € is column vector

consisting of 1’s, 0 is row vector consisting of 0's.
When dimension of the matrix or the vector is not

clear from context, it is indicated by suffix, e.g., €x«
denotes the unit column vector of dimension K +1

0O 0 0 --0 0
o=y 0 -0 0
A0 2% 2 0 0

0 0 0 --K' Ky
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-y 0 0
roo=2y
A=l 0 2y 0
0 0 (K-)y~ -Ky
0 0 0 - 0 0
0 0 .0 0 1 0 0
Er=|i i o] = S
0 1 0
0 0 00

~ S, is Kronecker delta. It is equal to 1 if i=J
and equal to 0 otherwise, ® is the symbol of
Kronecker product of matrices, 57  means
transposition of the vector b.

lLet O be the generator of the Markov chain
$,120  with blocks Q.; consisting of intensities
(O:)ix of transitions of the Markov chain 5> 20
from the state (%) into the state Uok).k.k' =0,K

The block
(K+1)x(K+1) The diagonal entries of the matrix

Q1,720 has dimension
Q. are negative and the modulus of the entry of

@)1+ defines the total intensity of leaving the state
(i,%) of the Markov chain.

Lemma. The generator € has the three-block-
diagonal structure:

Qo,o 9, O
0, O @
g=| 0 0, O (O
0 0 0 &
: : 0 .

Proof of the lemma consists of analysis of

transitions of the Markov chain &> 120 during the
infinitesimal interval of time and further combining
intensities of corresponding transitions into the
matrix blocks.
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Value 7 is the intensity of tokens releasing due

to the finish of a batch arrival, 7" is the intensity
of new customers in a batch arrival.
It follows from Lemma that the Markov chain

&=k}, 120  belongs to the dass of
Quasi—Birth-and-Death processes. So, well-known
technique by M. Neuts, see (Neuts 1981), can be
applied to derive ergodicity condition for this Markov
chain and to find its stationary distribution.

Theorem 1. Markov chain & =%k}, 120 s ergodic
if and only if the following inequality is fulfilled:

K
12 A= yK)+y Y by, 0

where

-1

e oY
Vi —O'k(;o'l] g = x| , k=0,K )]

’

Proof. It follows from (Neuts 1981) that ergodicity

condition of Markov chain & =k}, 120 g

fulfillment of inequality
y0,€)y0,e 3

where the Tow vector » is solution to the system
of linear algebraic equations

O, +0, +0,)=0, é=1 @)

Explicit form of the matrix (@o+@i+0:) is the
following:

-2 A 0 -0 0
y- = +A) A e 0 0
0 e -2y +4) - 0 0
0 0 0 - Ky~ —-Ky

It can be easy verified that this matrix coincides
with generator of the process of number of
custorrers in the classical Erang’s M/M/K/0 system

with customers arrival rate 4 and service rate 7.

So, the entries Yi» ¥ =0,K of the vector ¥, which
is solution of the system (4), are computed by

formulae(2). Substituting the vector ¥ defined by
these components and explicit form of matrices

00,0 into (3), we get inequality (1). Theorem is proven.
Inequality (1) has intuitively evident meaning: the

Markov chain & =%k} 120 is ergodic if and
only if the service rate exceeds the total customer
arrival rate. The first summand in the right hand
side of (1) is the rate of first customers in batches
arrival. The second one is the rate of customers
from already accepted batches.

It should be noted that condition (1) can be used
for rough estimation of the admissible number K of
tokens in the system under the fixed values of the
arrival and service processes parameters.

More exact estimation, which takes into account
sojourn time of accepted batches in the system and
the batch loss probability, requires calculation of
stationary ~ distributions of the Markov chain
&=1i,k}, 120 gnd sojourn time of accepted
batches in the system.

In what follows we assume that condition (1) is
fulfiled. Then the following limits
probabilities) exist:

(i, k) = imP{i, =ik, =k},i >0,k =0,N

(stationary

Let us combine these probabilities into the row vectors
= (ﬂ(i,O),ﬂ(i,l)," ',ﬂ(i7K))ai 20
It is well known that the vector (mo,71,7+) is the

unique solution to the following system of linear
algebraic equations:

(my,m,,)0=0 (my, 7, --)e=1

The following statement directly follows from the
results by M. Neuts in (Neuts 19831).

Theorem 2. The statonary probability vectors

7,i20 are computed by T =myR', i20
where the matrix R is the minimal non—negative
solution to the system

R2Q2 +RQ1 +0,=0

and the vector T is the unique solution to the
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system of linear algebraic equations

mo(Qye+RO)=0 n,(I-R) "' e=1

Having stationary probability vectors 7 i=m,
calculate  different
performance measures of the system. Some of them
are given in the following statements.

been computed one can

Corollary 1. Probability distribution of the number of
custormers in the system is computed by

limP{i, =i}=m,e,iz20
t—>©

Average number L of customers in the system is
computed by
L=Yime=n,R(I-R)’e

i=0

Corollary 2. Probability distribution of the number of
batches in the system is computed by

lim P{k, = k} =n,(I-R)"e® k= 0,K
>

where the column vector €’ has all zero entries
except the k" one, which is equal to Lk =0,K
Average number Bof batches in the system is
computed by
K « K
B=Y">kn(i,k)=mn, ) k(I -R)"e®”
k=1

k=1 i=0

Remark 1. In contrast to the model with the finite
buffer, see (Lee et al. 2007), where the arriving
batch can be rejected not only due to the tokens
absence but also due to the buffer overloading,
distribution of the number of batches in the model
under study does not depend on the number of
customers in the system. So,

K -
lim P{k, = k=0, o), k=0,K
—o0 =0

ie, the marginal distribution of the number of
batches in the system coincides with distribution of
busy servers in Frlang loss model M/M/K/0.

However, distribution 7#(.k).i >0,k =0,K | does not
have multiplicative form because the number of

customers in the system depends on the number of
batches currently presenting in the system.

Corollary 3. Mean number T of customers processed
by the system at unit of time (throughput) is
computed by

T =p(l—mye)

loss) .
The probability P b( of an arbitrary batch
rejection is computed by

P9 =% (0, K) =m, (I~ R) "™ =y,

=0

where probability ¥x is given by formula (2).

4. Distribution of the Sojourn Times

Let V»(X) be distribution function of an arbitrary
batch sojourn time in the system under study and

v,(5) be its Laplace-Stieltjes Transform (LST):

v, (s) = Ie‘”‘dVb (x),Re s20
0
Recall that sojourn time of an arbitrary batch in
the system starts since the epoch of the batch
arrival into the system until the moment when all
customers belonging to this batch leave the system.

We will derive expression for the LST Vs (s) by
means of the method of collective marks (method of
additional event, method of catastrophes). To this
end, we assume that the variable s is real and
interpret it as the intensity of some virtual
stationary Poisson flow of catastrophes.

So, Vs (5) has meaning of probability that no one
catastrophe arrives during the sojourn time of an
arbitrary batch. The expression for complex § is
easy obtained by means of analytic continuation.

We will tag an arbitrary batch and will keep track
of its staying in the system Let v(s,,L,k) he
probahility that catastrophe will not arrive during the
rest of the tagged batch sojourn time in the system
conditional that, at the given moment, the number of
batches processed in the system is equal to

k,k=0,K  the number of customers is equal to

,i20 and the last (in the order of arrival)
customer of the tagged batch has position number
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[,1=0,i in the system Position number 0 means
that currently there is no one customer of the
tagged batch in the system.

Theorem 3. The LST Vs(5) of an arbitrary batch
sojourn time is computed by formula

o K-1
vy (8) =P+ 2, kv(s,i + LI+ Lk +1)
=0 £=0 ()
where the LSTs v(s,i,L,k),1=0,i,i20,k=1LK are

defined as components of the vector V() having
form

v(s)=—Q ' ()B(s) ®)
where the vector B(S) is defined by
B(s) =(Bo(s):B, (), B (5)r )"

B.(5) =y (L (2 ) ®ey, iz 0
J7R J7R

the matrix €¥(S) is the blocking three-diagonal
matrix with non-zero blocks
Q, ,(s),j =max{0,i—1},5,i+1,i 20

defined by
Q. ()=—1, GI-0,)
Q. (5)=DP ®Q,,,, + DY ®y'I,
Q. (5)=DY®Q,,,,i20

where the matrix Di” of dimension (i+Dx(i+2)
is obtained from identity matrix Zi.1 by means of
supplementing it from the right with a colurmn 07,

The matrix Déi) of the same dimension has all

entries equal to Oexcept the entries which are
located in the last column and are equal to 1. The

matrix DY of dimension G+Dxi is obtained from

identity matrix I, by means of supplementing it

from above with a row {L0,--,0} the matrices @
are defined by

Proof. Formula (5) for the LST Vs(5)obviously
follows from forrmula of total probability. So, to
prove the theorem we have o derive equation (6).

To this end, we derive the system of linear
algebraic equations for the LSTs V(8,4,0,k) based
on the formula of total probability:

1

v(s,i, k)= X
s +l(1—5k)K)(1—5in)+,u+k7

X [A(= 8, Y= 6, W(s,i + L1k +1)+

+uy(s,i—LI-Lk)+y v(s,i+1LI+1,k)+
+ . - H
+y (k=Dv(s,i+LLE)+y (——) +
H+s

+ ¥ (k=Dv(s,i,l,k-1)]

1=0,i,i>0,k=1K )

Brief explanation of formula (7) is the following.

Denominator of the right side of (7) is equal to
the total intensity of the events which can happen
after the arbitrary time moment: catastrophe arrival,
new batch arrival, service completion, and expiring
the time till the moment of possible customer arrival
from batches already admitted into the system.

The first term in the square brackets in (7)
corresponds to the case when the new batch arrives.

The second one corresponds to the case when
service completion takes place. The third term
corresponds to the case when the new customer of
the tagged batch arrives into the system.

In this case, the position of the last customer of a

tagged batch in the system is reinstalled from / to i
+ 1. The fourth term corresponds to the case when
the new customer from another batch, which was
already admitted to the system, arrives. The fifth
term corresponds to the case when the expected
new customer of the tagged batch does not arrive
into the system and arrival of customers of the
tagged batch is stopped.

This batch will not more counted as arriving into
the system and the tagged customer finishes its
sgjourn time when the last customer, who is
currently the lth in the system, will leave the
system. The sixth term corresponds to the case
when some other batch is stopped.
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Let us introduce colurmn vectors
(5,0, 0y = (v(s,1,1,0), -+, (5,1, 1, K)) 1 = 0,4, i > 0 of
dimension K.

The system of linear algebraic equations (7) can
be rewritten in the following matrix form:
~(sI = O, )V(s,i, )+ O, V(5,0 +1,1) +

+ 0, Vs, = LI=1)+y v(s,i+ L1) +

Y RN T rel
+y e, =0,.,/=0,ii=20
( M+ s) KooK ®
Now, let wus introduce column  vectors
v(s,i) = (v(s,1,0),++, v(s, N))" of dimension

K(i+1),i20  and column vector
V(S)=(V(S,O),"',V(S,N),"')T

Using this notation, we rewrite the system (8) to
the form

Q, v(s,D)+Q,  v(s,i+ D+ Q,  v(s,i -1+

+P.()= 02(;41): i20 ©)]

and then into the form

Q(s)v(s) +B(s)=0" (10)

Formula (6) evidently follows from (10). Inverse
matrix in (6) exists for any s-Res)0 and s=0
because the diagonal entries of the matrix €(s)
dominate in rows of this matrix. Theorem is proven.

Remark 2. The LST V(S) is the LST of an

arhitrary batch sojourn time, including the batches
which are rejected and do not enter the system.

The LST Vb(accept) of an arbitrary accepted batch
sojourn time is calculated by

K-1

DD 7 kv(s,i+ 1,1 +1,k+1)

vb(ampt) ( S) _ =0 k=0

(Iass)‘
1-P,

Corollary 4. The mean sojourn time Vo of an
arbitrary batch 1s computed by

o K-1 ; ;
v, - _Z’i”(i’k)ﬁv(s,z+l,z+1,k+1)|

i=0 k=0 Os

5=0 an

ov(s,i+1,i+1k+1)|
values Os

where the oo are

computed as the corresponding entries of the vector

av(s)

ds |_,, which is calculated by

S s=0 dS s=0 (12)
where

dp(s)  _

dS 5=0
:_7-(0,0,;0,;3,...,O,L,...,ﬁ,...)®eK

uopp uoou

Corollary 5. The mean sojourn time Vb(ampt) of an

arbitrary accepted batch is computed by

V (accept) Vb
b

- {loss}
1- P,

Remark 3. Formulae (6), (12) require inversion of
infinite size matrices. Thus, to compute the required
vectors, one should cut the corresponding matrices in
a proper way. This does not lead to essential error

in calcdlation of the LST v,(s) by formula (5) and

the mean sojourn time /» by formula (11) because

v(s,i,1,k) >0 when i— % and probabilities 7(>k)
in right hand side of (5) and (11) become negligible
for large i under assumption that the Markov chain

& =ik}t 20 ynder study is ergodic.
5. Numerical Examples

The goals of this section are to demonstrate
feasibility of the elaborated formulae for calculating
the main performance measures of the system under
study and to show effect of the number K of tokens
in the system and effect of mean batch size. In the
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first numerical example, we fix the following
parameters of the system: A=1, #=25 y=2
6=05.

<Figures 1-4> show dependence of the system
throughput T, average number L of customers in the

system, batch loss probability [)b(hm) and average

%4 (accept)

sojourn time Ys of accepted batches on the

number K of tokens in the system.

K

a 2 i 5 g 10

<Fig. 1> Dependence of the throughput T on the
maximal admissible number K of batches

14

11 K
0 2 1 & 8 10
<Fig. 2> Dependence of the average number L of
customers in the system on the maximal admissible

number K of batches

0.5p@s
0.4
03]
0.29

0.14

K
1 [3 & TC

<Fig. 3> Dependence of the batch loss probability

Pb(hm) on the maximal admissible number K of
batches in the system

0 )

Véucep!]

15 K
0 2 4 6 5 10
<Fig. 4> Dependence of the average sojourn time

{accept) .
V, i of accepted batches on the maximal

admissible number K of batches

Looking at these figures, one can solve different
optimization problems easy. For instance, if one

would like to have the batch loss probability 5"
less than 0.02, he should take the value K greater or
equal to 4.

However, if one would like to have the average

A N {accept)
sojourn  time V, i of accepted batches not

exceeding 35, he should take the value K less or
equal to 3.

In the previous example we fixed value 6=0.5
what implies that mean batch size is equal to 2. The
second example has aim to demonstrate influence of
parameter 6 on the main performance measures of
the system. We fix the following parameters of the
system: A=2, #=4 y=2 K=2. Figures 58
show dependence of the system throughput T,
average number L of customers in the system, batch

loss probability 5“” and average sojourn time
Vb(mept) of accepted batches on the parameter &.
3.51
5]
6]
2]
1.51

8
1

D 02 04 3 08
<Fig. 5> Dependence of the throughput T on the
parameter &
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]

0 02 04 06 ]
<Fig. 6> Dependence of the average number L of
customers in the system on the parameter 6

<Figures 5-7> evidently show great impact of the
batch size and confirm usefulness of the results
presented - in this paper for accurate calculating the
system performance measures, choosing suitable
threshold K for batches accepting depending on the
parameters of the system.

1] v

;|

i 02 04 06 08
<Fig. 7> Dependence of the average sojourn time

(accept)
Ve 7 of accepted batches on the parameter 6

6. Conclusion

In this paper, novel infinite buffer queueing model
with batch arrivals distributed in time is analyzed.

Ergodicity condition is derived. Joint distribution of
the number of customers in the system and number
of currently admitted batches is computed.

Sojourn time distribution of an arbitrary batch is
given in terms of the Laplace-Stieltjes Transform.

Usefulness of the presented results is illustrated
numerically. Results are planned to be extended to
the systems with more general batch arrival process
(eg, to MAP - Markovian Arrival Process),

inter-arrival times of customers of a batch and
service time distributions (e.g., to PH - Phase type
distribution), possibility of standard batch customer
arrival  within  an  admitted  batch, arbitrary
distribution of the number of customers in a batch,
service intensity depending on the number of
customers in the system, etc.
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