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COMPARISON BETWEEN THE POSITIVE SCHEMES AND
WENO FOR HIGH MACH JETS IN 1D

YouNGsoOo Ha

ABSTRACT. Comparison of high Mach number jets using positive schemes
and Weighted ENO methods is considered in this paper. The positive
scheme introduced by {11, 14] and Weighted ENO [9, 10] have allowed us
to simulate very high Mach numbers more than Mach 80. Simulations at
high Mach numbers and with radiative cooling are essential for achieving
detailed agreement with astrophysical images.

1. Introduction

The astrophysical jets have been investigated in analyzing the physical mech-
anisms that rule their behavior to astrophysics. The images of the Hubble Space
Telescope have led us to explain a new wealth of detail in gas flows and shock
wave patterns involving astrophysical jets and colliding interstellar winds of
particles. Simulating the astrophysical jets will allow us to explain the physical
mechanisms that rule the fluid flows and shock wave patterns.

In this paper we model the HH 1-2 [8] astrophysical jets in one dimension,
simulate its evolution numerically by means of the positive scheme introduced
by [11, 14], and discuss the results compared with solutions using Weighted
ENO (WENO-LF) methods [3, 9, 10] and exact. Since the HH 1-2 astrophysical
jets are very high velocity mass flow the total energy is mainly composed of
kinetic energy. High-order hyperbolic numerical methods developed over the
last few decades perform well up to medium Mach numbers, but eventually
produce negative pressures as the Mach number of the jet is increased. This
makes the computing of the speed of the sound (a = v/vp/p) fail. And it yields
the non-physical states. In order to simulate the HH 1-2 astrophysical jets or
any other high Mach number jets, we need robust schemes to deal with intense
radiative shocks in front of a bow shock.
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The positive scheme allows us to simulate astrophysical jets with radiative
cooling at very high Mach numbers - much higher than other methods. Com-
puter simulations and astrophysical theory will allow us to analyze the detailed
properties of astrophysical jet flows.

The modeled astrophysical jet in one-dimension has two shocks and a contact
wave. We focus to explain the behavior of the positive scheme after simulating
the astrophysical jet and discuss the accuracy of the positive scheme comparing
with WENO-LF methods [3, 10] in the shocks and contact discontinuity. In
section 2, we present the gas dynamic equations used to simulate the supersonic
astrophysical jet. In section 3, we discuss briefly the positive scheme. In section
4, we compare the results obtained from the positive scheme and WEN O-LF
methods. Finally, in section 5, we draw conclusions.

2. Gas dynamic equations

In this section we consider the time-dependent Euler equation of gas dy-
namics. The Euler equation is a non-linear hyperbolic system of equations
that simplify the Navier-Stokes equations by neglecting the effects of viscosity
and heat conduction. From the mathematical point of view the Euler equa-
tion allows discontinuous solutions even if the initial conditions are continuous.
Physically, the flow contains shocks or contact discontinuities. The Euler equa-
tion consists of equations for conservation of mass, momentum, and energy:

) % 2 = o
@) O )+ gt +P) = 0,
3) O Dupsp) = —wAD),

where p = mgn is the density of the gas (predominantly H), my = 938.272MeV/
C? is the mass of H, n is the number density, u is the velocity, pu is the
momentum density, P = nkpT is the pressure, kp is Boltzmann’s constant, T
is the temperature, and

(4) E= gnkBT + —;«puz

is the energy density. The pressure is related to the internal energy density by
the equation of state, which to an excellent approximation is polytropic:

) P=(y-1(E - yo),

where the polytropic gas constant v = % for a monatomic gas like H.
Radiative cooling of the gas is incorporated through the right-hand side of
equation (3), with the model for A(T') taken from Fig.8 of Ref.[17]. The cooling
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law can be modeled approximately by

dE L, —AP2-PY), HT>T,
(6) ( dt Jeoating = —n"MT) { 0 otherwise

where A = —8.776 in our computational units, P, is the ambient pressure,
and 7T, is the ambient temperature. Note that the approximate cooling law
expression begins to diverge from the tabulated cooling law for T > Ty ~ 108K.

3. The numerical method

We will use a positive scheme for the supersonic astrophysical flow simula-
tions. We have extended and adapted the code for simulating very high Mach
number flows with radiative cooling. In order to handle the radiative cool-
ing source term in the gas dynamics equation we tried two different methods:
(1) a splitting method for an implicit treatment of cooling, (2) an unsplitting
method for positive schemes with an explicit treatment of cooling (see [4, 21]).
The computational results were virtually identical. In the splitting method,
first we solve the homogeneous gas dynamics equation (with A = 0), and then

we update the energy density E by solving the ordinary differential equation
(ODE)

(1) (%)coolin‘q = _nZA(T)

3.1. Conservation laws

We consider the general form of systems of conservation laws. Let 2 be an
open subset of ®™, and let F' be a smooth function from € into #™. Then the
general form of a system of conservation laws in one dimensional space is

dq  OF(q)
@) ot ox

where ¢ = [q1,q2,-.,qm]T and F(q) = [f1, fas-.., fm]®. Here ¢ is the vector
of conserved variables, and F = F(q) is the vector of fluxes and each of its
components f; is a function of g. An equation of the form (2) is written
in conservation form and is called a set of conservation laws. We shall be
concerned with hyperbolic conservation laws (2).

The one-dimensional gas dynamic equation without cooling obeys the non-
linear system conservation laws:

ou 0

=0, z=(21,%2,...,Zm) ERN",t>0

(3) 5 T b—g}(F(U)) =0
with

p pu
(4) U=|pu |, FU)=]| pu’+p

E u(E + p)
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This can be written in the quasi-linear form

oU ovu
(5) B + A(U)EE

where A(U) = F'(U) is the flux Jacobian matrix.

=0,

3.2. Positive schemes

We consider a two parameter family of second-order accurate positive sche-
mes introduced in {11, 14]. Now we consider one-dimension hyperbolic systems
of conservation laws:

dq 0
(6) ——+—(())—0
ot
n q; ifx <12
7 gy =44 j
™ wory={ 4 Grson

We discretize the z — ¢ plane by choosing a mesh width Az; = z;41 — z; with
uniform intervals, and define the discrete points (z;,t™) by

(8) z; = jAz, j=...,-1,0,1,...
(9) t" = nAt,n=0,1,2,....
And we define the mid-point:

1 o1

Rather than the pointwise value g7 as an approximation to the value g(z;,1")
we view it as an approximating average value of ¢ over the given interval. We
define a cell average of ¢(z,t") by

1

11 I = B ")d
(11) G =xs /wj_w q(z,t")dz.

We adopt the semi-discrete formulation to solve the conservation laws (6).
Discretize the conservation laws (6) to obtain

iz W@ OIE@D) Ly, ) - Sl )
and
(13) dqéit) = ‘*—(fjﬂ/z = fi—1p2) = L(g7 ),

where ¢;(t) is the numerical approximation to the point value q(z;,t) and the

numerical flux f]+1 /2 approximates hj; 12 = h(zj41/2) to a higher order with
h(z) defined by

(14) fas@) = o [ nee.

Tj_1/2
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The numerical flux fj+1 /2= f (@j—rs- -, Qj+s) 1 Tequired to satisfy the follow-
ing conditions:(1) Lipschitz continuous in all arguments (2) Consistency with
the physical flux. Then the solution to the conservative scheme will converge
to a weak solution of (6), if it exists, by the Lax-Wendroff theorem [12]. For
the time discretization, a TVD Runge-Kutta discretization introduced by Shu
and Osher in [18, 19] is used. The time discretization is presented at the end
of this section.

The basic idea of the positive scheme is combining a second order accurate
scheme with numerical flux f2¢¢, with another dissipative scheme with numer-
ical flux f%*. Then using the flux limiter introduced in [1, 7], we obtain the
numerical flux of the form

(15) f': fdiss +L(facc _ fdiss),

where the flux limiter L is near the identity when the flow is smooth and near
zero otherwise. In this way the positive scheme attains high-order accuracy in
regions of smooth flow, and a sharp monotone resolution of shock waves. The
numerical flux fj+1 /2 in each coordinate direction was given by the following

formula:
(16) o170 = LERLEIG) L poi|(1 - )+ 61 - )R (00— )

where the matrix R, ®, |A|, y, and ¥ are defined below, and the adjustable
parameters o and g satisfy 0 < o < 1 and o + 8 > 1. This positive scheme
makes use of Roe’s scheme [16], with an “entropy fix” [6] which guarantees a
nonzero diffusive term through the choice of y and 3. An advantage — and a
disadvantage- of positive scheme is that they have many parameters which can
be adjusted to obtain high resolution of different flows.

To apply the gas dynamic equation (3),(4) to the positive scheme (16) we
need the characteristic decomposition procedure of it. Based on the values of
g; and gj41, a mean Jacobian A;,/2 is defined at the interface x;, /. Here
we use the Roe averaging method [15, 16] to apply the equations (16) in the
codes. The Roe solver between states ¢; and gj41 is based on averaged states

(17) 5= YOI E P
N RV

(18) g - VPt +/PiviHin
NN

(19) 8= ((y — DIA - 582,

Here we use v = 5/3 and H; is the total enthalpy

(20) H; = Eitp
pi
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Write A = RAR™!, where A is the matrix of eigenvalues of A and R consists
of columns of the right eigenvectors associated with the eigenvalues. [|A| =
diag(|Ai]), i = 1,...,m, is a diagonal matrix whose entries are the absolute
values of the eigenvalues \; of A. Each entry of the diagonal matrix p =
diag(p;) satisfies p; > |A;|. The matrices ® = diag(¢:(6;)) and ¥ = diag(v(6;))
have entries which are the limiter functions evaluated at the local solution,
where 8, is the ratio of the slope at the interface in the upwind direction to the
slope at the current interface:

e IELE PR
for i = 1,...,m and where [; is the ith row of R™.
We use limiter function [20] satisfying the constraints
(22) 0< 00, 2P <2 i) =1
and
(23) 0<v@), 2 <1, py =1,

Each ¢; can be a different limiter function, and % is the minmod limiter func-
tion. The CFL condition insuring the positivity of the scheme (13) and (16)
is

At k k 1
n M) < —-.
——m(an}fjxp\ (q])l—l-ﬁmk%xu (¢7)) < 5

To retain high-order accuracy in time without creating spurious oscillations,
it is customary to use so-called TVD Runge-Kutta methods [18, 19] as the ODE
solver. These methods employ a convex combination of forward Euler steps to
advance the solution in time. They are especially designed to maintain the
TVD property, i.e., ensure that the solution is total variation diminishing. The
second-order method (RK2) reads:

¢V =+ AL,
gt = Sa+ gld + dicg)]

4. Numerical results

In this section we present numerical results using the positive scheme for
the gas dynamical equations (1)-(3) with cooling and without cooling in one-
dimension. To validate the positive scheme, we made comparisons of simula-
tions of WENO-LF and exact solutions. We discuss the numerical results for the
gas dynamical equations for the positive scheme and WENO-LF 3rd (WENO-
LF3) and 5th order (WENO-LF5) methods at the velocity = 30.0 (Mach num-
ber 80). We solve the gas dynamical equations on (z,t) € [0,2] x [0, 0.06] where
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TABLE 1. Parameters for the jets in HH 1-2

jet ambient
04 5/3 5/3
p 500 H/cm?® 50 H/cm?
uj 300 kmn/s 0
T; 1000 K 10,000 K
o 3.8km/s 12 km/s

the initial condition for the equations is given by

p 5.0 P 0.5
(24) u | = 30 ifr<0.1, | u | = 0 if x> 0.1
p 0.4127 P 0.4127

Boundary conditions are implemented by ghost points for the rest of the bound-
ary.
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FIGURE 1. Results of Density without cooling at time t= 0.06
with several parameters o and 3 ;(*—: exact, ‘. : a=1.0,8 =
0.01,v’: & =0.9,8=0.1, %" a=0.508=0.5 (b) second
shock, (c) contact wave, and (d) first shock
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FIGURE 2. Jet for density and velocity without cooling at time
t = 0.06 , (b) second shock, (c) contact, and (d) first shock

The jets in HH 1-2 have the parameters listed in Table 1. The performances
of the supersonic astrophysical jets without cooling are shown in Fig.1 - Fig.3
using 500 points (Az = 0.004) with simulations using third- and fifth-order
WENO-LF and with the exact solution. The parameters (« and 3) and limiter
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FIGURE 3. Jet for pressure and temperature without cooling
at time t= 0.06 (b) second shock, (c) contact, and (d) first
shock

functions are properly chosen for the positive scheme. Unfortunately we do
not have a formula how to choose the parameters « and § but we can take
the optimal values of the a and 3 by initial conditions or wave patterns. If a
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FIGURE 4. Jet with cooling at time t= 0.06 , « = 1.0, 5 = 0.01

solution of the equation consists of two symmetric rarefaction waves we need
to take a smaller number a and a larger number 3 (test 2 in [21]). Indeed a
larger number 3 leads to larger viscosity. Usually we chose closer 1 for o and 0
for B for the Euler equations whose solution consists with shock, contact, and
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rarefaction waves. Since the solution of the jets has two shocks and a contact
wave, we choose & = 1 and 3 = 0.01. (see Fig.1).

If we are using the superbee limiter for ¢;(6;) i = 1,...,3, then the positive
scheme yields negative pressure and can not compute the equation (16). To
avoid negative pressure for the positive scheme we use the superbee limiter for
$2(62) and Van Leer’s function for ¢;(6;) ¢ = 1,3 with adjustable parameters a
and 8. Fig. 2 and Fig. 3 have shown more detail of the solutions computed by
the positive scheme, exact, and WENO-LF methods. The positive scheme and
WENO-LF5 method perform virtually identically in the first and second shock
waves. But the positive scheme produces a better result than WENQO-LF5 on
the contact wave. Indeed the WENO method has a weakness to compute the
contact discontinuity.

The simulation (Fig. 4) with radiative cooling reproduces the morphology
and physics of the cylindrically symmetrical jet in HH 1-2. Note the differ-
ences between the Mach 80 jet without and with radiative cooling. The jet
with radiative cooling has a much higher density contrast near the jet tip (as
the shocked, heated gas cools radiatively, it compresses) a much thinner bow
shock, reduced Kelvin-Helmholtz rollup of the jet tip, and a lower average tem-
perature. Radiative cooling is essential in understanding the density contrast
and morphology of the jets and bow shocks in HH 1-2.

5. Conclusion

We simulated the HH 1-2 astrophysical jets using Euler gas dynamic equa-
tion with the positive scheme in 1-dimension. We compared the results of
the positive scheme with those of WENO schemes in 1D. The positive scheme
and WENO-LF are shown almost the same results for the first and second
shock but the positive scheme has a better result for the contact wave (see
DENSITY(c) in Fig.2 (¢)} than WENO-LF5 for the Euler gas dynamic equa-
tion without cooling. Even though WENO-LF3 and WENO-LF5 are third
and fifth order accuracy in space respectively, the WENO-LF5 is not better
or almost the same accuracy as other second order numerical schemes (second
order Godunov, central-upwind schemes, and several other schemes) solving
the hyperbolic equation (2) (see [3, 4, 13]).

Since the modeling astrophysical jets have very high temperature and pres-
sure with additional effects of radiative cooling we have to take circumspection
about the negative pressure in numerical schemes. Fortunately the positive
scheme by Liu and Lax [11, 14] gives us an excellent approximative results.
We believe the simulation will help in analyzing the processes at work in the
supersonic astrophysical jets. In order to make detailed simulations of the
astrophysical images of the HH 1-2 jets including reproducing morphology,
shock structure, and temperature/ionization profiles of both jets, as well as the
pathological features of the asymmetrical jet, we plan to extend to 2 and 3
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dimensional simulating the jet and the interaction of the jets with their ambi-
ent environments and to adapt the numerical code for a parallel version which
is one of advantage of the positive scheme. There exists a trouble to apply
WENO-LFS5 for a 2 dimension astrophysical jet because of the dimple phenom-
enon in the bow shock. But since the positive scheme has flexible parameters
and limiter function one may simulate the astrophysical jet in 2D and 3D using
it. This is another advantage of the positive scheme.
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