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A GENERAL UNIQUENESS RESULT OF AN ENDEMIC
STATE FOR AN EPIDEMIC MODEL WITH EXTERNAL
FORCE OF INFECTION

YOUNGIOON CHA

ABSTRACT. We present a general uniqueness result of an endemic state
for an S-I-R model with external force of infection. We reduce the problem
of finding non-trivial steady state solutions to that of finding zeros of a
real function of one variable so that we can easily prove the uniqueness of
an endemic state. We introduce an assumption which was usually used
to show stability of a non-trivial steady state. It turns out that such an
assumption adopted from a stability analysis is crucial for proving the
uniqueness as well, and the agsumption holds for almost all cases in our
model.

1. Introduction

In this paper we study the uniqueness of a non-trivial steady state of an
age-structured S-I-R type epidemic model. Age structured S-I-R models are
suitable for most common childhood diseases (measles, chickenpox, rubella), as
well as for many sexually transmitted diseases which impart immunity (syphilis,
chlamydia), and also for those diseases, like HIV /AIDS, which lead to definitive
isolation or death [1, 5, 6, 7, 8, 12, 14].

In [4], the authors have considered an S-I-R model with external force of
infection. Although infection of the human disease mainly occurs between
humans through physical contacts, there are lots of other ways of infection.
For instance, one can be infected with bird flu (avian flu) by direct contact
with live birds or bird droppings. Most people who have gotten the virus work
directly with poultry or have had close contact with birds.

Mad cow disease is another good example; there is still no evidence that
indicates the recently emerged human form of mad cow disease, it is believed
that potentially a lot of people are affected by that disease.

Tt seems that infected animals could be the main source of the infection in
those diseases. The thing is that, for some diseases, external force of infection
is more important than anything.
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Since the external force was considered in [4], the existence and uniqueness
results they obtained were somewhat different from those of the usual S-I-R
models without external force: a non-trivial steady state always exists and it is
unique if the vertical transmission parameter, ¢, of the disease is equal to zero.

In this article, as a generalization, we shall get a uniqueness result for the
same model with an arbitrary vertical transmission parameter, i.e., 0 < g < L.

Before stating the uniqueness result, we have to begin with the PDE system
for the S-I-R model and the parameters used in it:

((Js Os
" ga T HO = TMe s
di O , ;
P + 3 + pla)i = Ma, t)s — v(a)i,
or Or .
5 T 5a T u(a)r = vy(a)i,

s(0,t) = /Oat B(a)(s(a,t) + r(a,t) + (1 — g)i(a, 1)) da,
i0.0=¢ [ sl@i(a,)da
r(0,t) = 0,

L i(a,0) =ig(a), s(a,0) =so(a), r(a,0)=ro(a).

Here a is the age of individuals, and ¢ is the time. Also, s(a,t), i(a,t) and
r(a,t), respectively, denotes the age-specific density of susceptible, infected,
and removed individuals.

The other important parameters are as follows: 3(a) is the birth rate and
p(a) is the death rate of the population. The parameter g € [0, 1] is the vertical
transmission parameter, i.e., the probability that the disease be transmitted
from parent to newborn, v(-) is the removal rate of infected individuals, and
A(a, ) is the force of infection. Note that since r(0,¢) = 0, our model assumes
that there is no vertical transmission of immunity.

Our main concern is the existence and uniqueness of an endemic state of the
model. (Endemic state is a steady state solution of the model for which the
density of infected individuals does not vanish identically.)

Summing the equations in (1) we obtain the following problem for the total
population age-density p(a,t) = s(a,t) + i(a,t) + r(a,t},

B+ 24 e =0,
@) pmw=A‘mmmmm,

p(a,0) = po(a),
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where po(a) = so(a) + ig(a) + ro(a). (This is the standard McKendrick—Von
Foester equation [1, 2, 13].)
We make the following usual hypotheses for this problem,

(3) ﬁ() S Loo([07a]‘))a B(a’) Z 0in [O,GT),
(4) p(-) € L, .([0,a1)),  w(a) > 0in[0,a4),
(5) / ' ja)do = oo

Here a; is the maximum age an individual of the population may reach and it
may be either finite or infinite. If a; = oo, we also assume that

(6) there exists A > 0 such that 8(a) = 0 for a > A.

Furthermore, in order to deal with a steady state population, we assume that
the net reproductive rate of the population is equal to one and that the total
. population is at an equilibrium. This means that

(7) /OaT Bla)e” Js weyde g, — pla,t) = poo(a) = bom(a),

where
7'(((1) —=e foa “(U)do
Note that the function n(a) is the probability that an individual at age 0 can
survive until age a. Since no individual may live past age a4, (5) is needed.
We take initial data such that
so(a) >0, io(a) >0, ro(a) >0, so(a)+io(a) +ro(a) = peo(a),
which gives
by Jy" so(a)da + Joio(a)da + I ro(a)da‘
[y m(a)da

We assume that

v() € L*=([0,a4)), v(a) > 0in [0,a)

and consider the following form for the force of infection:

Ma,t) = k(a) /OaT h(o)i(o,t) do + g(a),

where h is the age-specific infectiousness, x the age-specific contagion rate, and
g is the external force of infection [4]. They satisfy the following conditions:
h()a K’(’)a g() € Loo([oaa’()) and h(a)a K’(a)7 g(a) Z 07 on [Oaa’[)'
We also assume that none of 5(- ) (), v(), h(), &(-), g(-) is identically zero.
We note that by assumption (7), the fourth equation in (1) becomes

s(Ot /B(apOO Yda — / B(a atda—bo—q/ B(a)i(a,t) da,
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so that the equations involving the variable r(a,t) in (1) can be disregarded
since s(a,t) and i(a,t) are sufficient to determine the evolution of the whole
system. Thus we will be concerned with the following reduced system:

4

0% 0,1) + 92(@0) + n(as(a, 1) = ~Aa,Ds(a, 1),

%(a, t) + gg(a,t) + p(a)i(a, t) = Ma,t)s(a,t) — v(a)i(a, t),
(8) 5(0,¢) = by — i(0, 1),

umn:qéwﬂmmmnm,
\ i(a7 0) = 7;O(a)7 s(a,O) = 50(0’)'

We will analyze (8) by using the techniques developed in [4]. However, we
will modify them so that they can be applied to our case. So, in the next section
we will reduce the problem of finding endemic states to that of finding zeros
of a real function. Then, in sections 3 we will give our main result. Finally, in
section 4, concluding remarks will be given.

2. Equations of real variables

We now consider the problem of the existence and uniqueness of steady states
of system (8). Consequently, we are concerned with the following problem:

( Os

) 24 pa)sla) = ~(Tn(@) + (@) s(a),
i) Oy a)ila) = (Tx(a) + g(a)) s(@) - 7(@)ila).
9) L J:AMM@NQM,
iv) 5(0) = bo — #(0),
v i0=q [ s@ie)ds

It is easy to see that the problem admits the disease-free equilibrium s*(a) =
Poo(a) and i*(a) = 0 if and only if g(a) = 0. Since we are assuming that g
is not identically zero, there is no disease-free equilibrium. To investigate the
existence and uniqueness of an endemic state, we modify problem (9) by taking
the following new variables called the age profiles respectively of infected and
susceptible individuals:

s(a)

= peola)

i(a)

Poo(a)

;0 w(a)

ula) =
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With these new variables, problem (9) becomes

)%= (Iela) + 9(@) vla),
i) 2= (Jnla) + 9(a) (e) —2(a) u(@)
(10) ﬁ iii) J —bo/ h(c (o) do,
iv) »(0)=1-
\ v) X = q/0 Tﬂ(o) (o) u(o) do

From (10.i) and (10.ii) we get the following:

(11) (@) = (1 = X)e~ Jo U@ talo)de,

u(a) = Xe Jo 7047 4 (1 - X)

(12) y /a(JK/(G-) + g(a_))e, Ie ﬂ,’(s)ds—-fg(J“(S)+9(S))deo-.
0

Finally, substituting (11) and (12) into (10.iii) and (10.v) we are led to the
following relations,

. J=XG+ (1-X)(JM(J)+ D(J)),
X = XR+ (1- X)(JL(J) + C(T)),

where we have introduced the following notation:

G:%Awm@m@n@m,

R=q [ flaym(e) (o) do

J) = bo /O " h(a) =(a) F(a, J) da
L) =gq Oatﬁ(a)w(a)ﬁxa,J)da,
D(J) = bo /0 " ha) n(a) H(a, J) da,
ey =q [ Blayr(a) H(a, J)da,

0



602 YOUNGJOON CHA

and
F(a) =e f: ’\/(O‘)do"

F(aa J) = /a )i(o’)e’ f: ’Y(s)ds—fg N(s,J) dsda’
(15) 0

H(a,J) :/ g(o)e~ Jo 1()ds=J5 N(s,J) ds gy
0

N(s,J) = Jr(s) + g(s).

We seek solutions of (13) such that J > 0 and 0 < X < 1. (Note that
X = u(0) and 0 < u(0) < 1.) In fact, any such a pair (X,J) provides a
nonnegative solution of (10) via (11) and (12).

Note that if the following conditions are satisfied, then (13) reduces to a
single equation with two unknowns J and X:

(16) R=1 and L(J)=C(J)=0 forallJ

From the definitions in (14) and (15), we can see that (16) is equivalent to the
following:

(17) g=1, g <a

where

ag <a_, and ag <a
Z; =inf{4: B(a) = 0 ae. in [4,a1)},
= sup{A : g{a) =0 a.e. in [0, Al},
=sup{4 : x(a) = 0 a.e. in [0, A]},
= sup{4 :7(a) = 0 a.e. in [0, A]}.

These results lead us to consider the following very special case [4].

9
a, =
’Y

Lemma 2.1. Assume (17) holds. Then problem (10) has a continuum of non-
trivial solutions.

Thus if (17) is satisfied, (13) has infinitely many solutions and it is not
desired to our model. Since we want to rule out such a pathological case, the
following assumption is required in the rest of the paper.

(18) All the relations in (17) do not hold simultaneously.

Under the assumption (18) we can further reduce the system (13) to a single
equation. In fact, solving the second equation for X we obtain
B JL(J)+ C(J)
T 1-R+JL(NH+CTY
which, when substituted into the other equation yields:
(20) (1 -R)(J —JM(J) - D(J)) + (J - G)(JL(J) + C(J)) = 0.

Thus, we need to study this equation. Note that any solution J > 0 of (20)
provides a solution of (13) with X € [0, 1] given by (19).

(19)
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In order to study equation (20), we will consider the continuous function
21)  ¢(J) = (1 - R)(J - JM(J) — D(J)) + (J — G) (JL(J) + C(J))

and analyze its behavior in the interval [0, cc).

3. Uniqueness of an endemic state

To establish the uniqueness of an endemic state, we need the following extra
assumption:

(22) uw(at) <e” [T Ae)ds
Actually, this condition is analogous to the following one used in [12]:
(23) w(ay) < e 7,

which was used to show stability of the solutions for the S-I-R model with ¢ = 0
and a constant removal rate 7.

Since a function v(-), rather than a constant, is used in our case, (22) is a
natural generalization of (23). Although we are not dealing with stability but
uniqueness in this paper, (22) will play a crucial role in proving uniqueness.
Fortunately, from the fact that a; is the maximum age one can reach, u*(at)

might be very small or even zero, which implies that in most cases condition
(22) does hold.

The following three lemmas are needed to show the uniqueness. Among
" them, the first lemma is a direct copy of that in [5]. The lemma including the
proof is shown here for the readers’ convenience, though.

Lemma 3.1. If (22) holds, then
(24) /Oa v(o)els NN =1)ds gy < 1 for all a € [0, a4]-
Proof. Note that u(a) can be computed as follows.
u(a) = Xe J5 1@ (1 - X) /a N(o, J)e— J2 15— J5 N(s.Dds g,
0
Hence
ulay) = ¢~ Jo ' () [X +(1-X) / ) N(o, J)efﬂo("’(s)”N(s’J))dsda} :
0
Thus (22) is equivalent to the following:

as -
(25) X+(1-X) / N(o, J)els &) =Ns:ds g < 7.
0
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But

/af N(o, J)els V(&)=N(s:D)ds g
0

M e d -
= JoAsyds & — [ N(s,J)ds
/o e do ( e )da

= 1 TSN s / o (0)el (O-N(eT)ds gy
0

Therefore (25) is equivalent to
(26) / " (0)eds =N (s, INds gy o of" (1()=N(s,T))ds
0

(Note that X # 1 by (25).)
Hence, if we let

f(a) = / o (0)efS NI (o) ds g
0

then f(0) = 0 and f(at) < 1 by (26). Moreover, by a simple calculation, we
have

f'(@) =~(a) + {N(a,J) — v(a)} f(a).

Now, either N{a, J)—+{a) > 0 and consequently f'(a) > 0, or N{a,J)—v{a) <
0 and, in this case, if 0 < f(a) < 1,

(27) f'(a) 2 v(a) + N(a,J) = ~(s) = N(a,J) 2 0.

Thus, in both cases, f(a) is a non-decreasing function whenever 0 < f{a) < 1.
This is enough to prove (24): in fact, f(0) = 0 and f(a;) < 1 so that if
f(a) > 1 for some a, then there should be a point ag > a such that f(ap) <1
but f'(ag) < 0. This contradicts (27). ]

Lemma 3.2. If (22) holds and f; k(s)ds > 0 for some fized a > 0, then the
function

(28) W(J) = /a v(o)elo &) =N(s.1)ds gy _ o f5 (v(5)=N(s,))ds
0

is a strictly increasing function of J.

Proof. First note that, by Lemma 3.1, (24) holds and it is equivalent to the
following :

/ o (0)el =N s Ms g ¢ o5 (=N (a1
0
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Moreover, since [;' k(s)ds > 0,

/ 7 (/ )ds) efo (v(s)=N(s,J))ds 4.
1]
< ( n(s ds) ods (v()=N(s,7))ds

Thus we have

W,(J) = (/0 I‘E(S)ds) efoa('y(s)'N(S,J))ds

_/ v(o) </ n(s)ds) oJ5 (1(8)=N(s,))ds g5
0 0

> 0,
which completes the proof. O

Lemma 3.3. If (22) holds and ¢ > 0, then JL(J)+C(J) is a strictly increasing
function of J.

Proof. From the equations in (14), we have

JL(J)+C(J) = / B(a / N(o, J)e™ Jo 2(s)ds—Jg N(s:1)ds g5 gq

q/ Bla)w(a)T(a) [— elo V(S)ds——e_ Jo Nis.Tyds da] da

do

_ / Bla)r(@)T(a) [1 — ef5 (=N de

+ /a’y(o)efg(V(s)_N(s’J))ds da] da.
0

Now, from Lemma 3.2, together with the fact that «(-) does not vanish identi-
cally, we can easily see that JL(J) + C(J) is a strictly increasing function of
J. O

In [4], it has been proved that the endemic state for our model always exists.
In fact, the function ¢ defined in (21) satisfies the following:

#(0) <0 and lim ¢(J) = oo.
J—o0
Furthermore, it also has been proved that the endemic state is unique if ¢ = 0.
(See [4] for more details.)

We need a few more remarks before stating the main theorem.
First, if

(29) R=1and C(:) =0,
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then ¢(J) = J(J — G)L(J) has two distinct zeros, 0 and G. (Note that L(")
does not vanish identically in this case, by (18).) But (29) is too restrictive to
hold.

Second, if
(30) D(-)=0and C(-) =0,
then
(31) 8(J) = J[(1 - B) (1 = M(J)) + (J - G)L(T)],
so that finding zeros of (31) is equivalent to finding zeros of
(32) $(J) =1 ~-R)(1-M()+(J - GL{),

except for the trivial zero, J = 0. Since the function ¢ in (32), is nothing but a
function from usual S-I-R model without external force, we are not interested
in that case. (See [6] for more details and uniqueness results there.)

Thus we assume that neither (29) nor (30) holds in the rest of the paper,
that is, we may assume that

(33) #(0) = —(1 — R)D(0) — GC(0) < 0.
Now we state our main theorem.
Theorem 3.4. If (22) holds, then the endemic state is unique.

Proof. Since the uniqueness result for ¢ = 0 is proved in [4], we may assume
that ¢ > 0. Moreover, since ¢(0) < 0 by (33) and lim; o #(J) = oo [4], it
is enough to prove that the function ¢ is strictly increasing. First note that if
0 < J < G, finding zeros of

D(J) c(J)

b(J) = J [(1 ~R) (1 - M(J) - —J—) -(G-J) (W) * T)]

is equivalent to finding zeros of
o0 v =-m(1-m0) - 22) G- (s + OF)

From (34), we can conclude that 1 is strictly increasing. In fact,
D(J
1210y 2
is increasing for all J > 0, and

- (14 92)

is negative, and the absolute value of it is decreasing for all J € (0,G).
Now, for J > G,

oJ)=1-R)J (1 -M(J) - %ﬁ) +(J -G (JL(J)+ C(J))

is again strictly increasing by Lemma 3.3.
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Thus ¢ is strictly increasing for any J > 0, which completes the proof. I

4. Conclusions

In this article, we have considered an inter-cohort S-I-R epidemic model with
external force of infection. The uniqueness has been shown for all ¢ € [0,1]
under the assumption that the following is true:

(22) u*(ap) < e~ Jo V(s

The uniqueness result we have found is a generalization compared with that
of [4] in which the uniqueness was shown for only ¢ = 0.

Although (22) holds for almost all cases so that we may say that the unique-

ness s proved, a uniqueness result without such an assumption is still open.
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