REMARKS ON K-STARCOMPACT SPACES

Yan-Kui Song

ABSTRACT. In this note, we construct an example of a Hausdorff \mathcal{K} -starcompact (hence, $1\frac{1}{2}$ -star-compact) space X having a regular closed G_{δ} -subset which is not $1\frac{1}{2}$ -starcompact (hence, not \mathcal{K} -starcompact).

1. Introduction

By a space, we mean a topological space. In this section, we give definitions of terms which are used in this paper. Let X be a space and \mathcal{U} a collection of subsets of X. For a subfamily \mathcal{V} of \mathcal{U} , we define

$$St(\cup \mathcal{V}, \mathcal{U}) = \bigcup \{ U \in \mathcal{U} : U \cap (\cup \mathcal{V}) \neq \emptyset \}.$$

As usual, we write $St(x,\mathcal{U})$ for $St(\{x\},\mathcal{U})$.

Definition 1.1 ([4]). A space X is $1\frac{1}{2}$ -starcompact if for every open cover \mathcal{U} of X, there exists a finite subfamily \mathcal{V} of \mathcal{U} such that $St(\cup \mathcal{V}, \mathcal{U}) = X$.

Definition 1.2 ([3, 4]). A space X is K-starcompact if for every open cover \mathcal{U} of X, there exists a compact subset K of X such that $St(K,\mathcal{U}) = X$.

In [1], a $1\frac{1}{2}$ -star compact space is called star compact. From the above definitions, It is clear that every \mathcal{K} -star compact space is $1\frac{1}{2}$ -star compact.

In [4], Matveev constructed a Tychonoff $1\frac{1}{2}$ -starcompact space X having a regular closed subspace which is not $1\frac{1}{2}$ -starcompact, and asked the following two questions:

Question 1 ([4, Question 20]). Is $1\frac{1}{2}$ -starcompactnesss preserved by closed G_{δ} -sets (in particular, zero-set)?

Question 2 ([4, Question 21]). Is $1\frac{1}{2}$ -starcompactnesss preserved by a subspace which is both regular closed and G_{δ} (or zero-set) in the whole space?

Received July 30, 2006; Revised February 9, 2006.

²⁰⁰⁰ Mathematics Subject Classification. 54D20.

Key words and phrases. starcompact, K-starcompact.

The author acknowledges supports from the NSF of China (Grant No 10571081) and the National Science Foundation of Jiangsu Higher Education Institutions of China (Grant No 07KJB-110055).

In [6], Song showed that there exists a $1\frac{1}{2}$ -starcompact Hausdorff space having a zero-set which is not pseudocompact (and hence, not $1\frac{1}{2}$ -starcompact) and a Tychonoff example under certain set-theoretic assumption, which answered negatively Question 1. In [7], Song showed that a regular closed subset of a \mathcal{K} -starcompact space need not be \mathcal{K} -starcompact. Thus it is natural for us to consider the following questions:

Question 3. Is K-starcompactnesss preserved by closed G_{δ} -sets (in particular, zero-set)?

Question 4. Is K-starcompactnesss preserved by a subspace which is both regular closed and G_{δ} (or zero-set) in the whole space?

The purpose of this note is to construct an example stated in the abstract which give negative answers to the Question 2, Question 3 and Question 4 in the class of Hausdorff spaces.

Throughout the paper, the cardinality of a set A is denoted by |A|. Let ω be the first infinite cardinal and \mathfrak{c} the cardinality of the set of all real numbers. Other terms and symbols that we do not define here will be used as in [2].

2. An example on K-starcompact spaces

In this note, we construct a Hausdorff K-starcompact (hence, $1\frac{1}{2}$ -starcompact) space X having a regular closed G_{δ} -subset which is not $1\frac{1}{2}$ -starcompact (hence, not K-starcompact). In order to show the example, we need the following Lemma from [4, Theorem 28]. Here, we include the proof of the Lemma for the sake of completeness.

Lemma 2.1. If a regular space X contains a discrete closed subspace Y such that $|X| = |Y| = \tau \ge \omega$, then X is not $1\frac{1}{2}$ -starcompact.

Proof. Let S be the set of all finite subsets of X. Then, $|S| = \tau$. First, we show that there exists a bijection $\varphi : S \to Y$ such that $\varphi(K) \notin K$ for each $K \in S$. Since $|Y| = \tau$, we can enumerate Y as $\bigcup \{Y_i : i \in \omega\}$ such that $|Y_i| = \tau$ for each $i \in \omega$ and $Y_i \cap Y_j = \emptyset$ if $i \neq j$. For each $i \in \omega$, let

$$S_i = \{K \in S : K \cap Y_i = \emptyset \text{ and } K \cap Y_j \neq \emptyset \text{ for all } j < i\}.$$

Then, $S = \bigcup \{S_i : i \in \omega\}$, $|S_i| = \tau$ for each $i \in \omega$ and $S_i \cap S_j = \emptyset$ if $i \neq j$. For each $i \in \omega$, since $|S_i| = |Y_i|$, then there exists a bijection $\varphi_i : S_i \to Y_i$. It is clear that $\varphi_i(K) \notin K$ for each $K \in S_i$ by the definition of S_i . Let $\varphi(K) = \varphi_i(K)$ for each $K \in S_i$. Then, we get the desired bijection.

For each $x \in Y$, there exists an open neighborhood V_x of x in X such that $V_x \cap Y = \{x\}$, since Y is discrete and closed in X. For each $x \in X \setminus Y$ there also exists an open neighborhood W_x of x in X such that $x \in W_x \subseteq \overline{W_x} \subseteq X \setminus Y$. For each $x \in Y$, set

$$U_x = V_x \setminus \overline{\cup \{V_z : z \in \varphi^{-1}(x)\}}.$$

For each $x \in X \setminus Y$, set $U_x = W_x$. Then, $\mathcal{U} = \{U_x : x \in X\}$ is an open cover of X. Let $\mathcal{U}_0 = \{U_{x_1}, U_{x_2}, \dots, U_{x_n}\}$ be an arbitrary finite subset of \mathcal{U} . Let $K = \{x_1, x_2, \dots, x_n\}$. Then, we have $\varphi(K) \notin St(\cup \mathcal{U}_0, \mathcal{U})$ by the construction of \mathcal{U} . This shows that X is not $1\frac{1}{2}$ -starcompact.

Example 2.2. There exists a Hausdorff \mathcal{K} -starcompact (hence, $1\frac{1}{2}$ -starcompact) space X having a regular closed G_{δ} -subset which is not $1\frac{1}{2}$ -starcompact (hence, not \mathcal{K} -starcompact).

Proof. Let D be a countable discrete space and \mathcal{R} be a maximal almost disjoint family of infinite subsets of D such that $|\mathcal{R}| = \mathfrak{c}$. Let $S_1 = D \cup \mathcal{R}$ be the Isbell-Mrówka space as in [5].

Let

$$A = \{a_{\alpha} : \alpha < \mathfrak{c}\} \text{ and } B = \{b_n : n \in \omega\}$$
$$Y = \{\langle a_{\alpha}, b_n \rangle : \alpha < \mathfrak{c}, n \in \omega\},$$

and let

$$S_2 = Y \cup A \cup \{a\}, \text{ where } a \notin Y \cup A.$$

We topologize S_2 as follows: every point of Y is isolated; a basic neighborhood of a point $a_{\alpha} \in A$ for each $\alpha < \mathfrak{c}$ takes the from

$$U_{a_{\alpha}}(n) = \{a_{\alpha}\} \cup \{\langle a_{\alpha}, b_{m} \rangle : m > n\} \text{ for } n \in \omega$$

and a basic neighborhood of a takes the from

$$U_a(F) = \{a\} \cup \{\langle a_{\alpha}, b_n \rangle : a_{\alpha} \in A \setminus F, n \in \omega\}$$
 for a finite subset F of A .

Lemma 2.3. The following properties hold:

- (1) S_1 is regular;
- (2) S_2 is Hausdorff, but not regular;
- (3) S_2 is K-starcompact.

Proof. (1) Since every point of S_1 has an open and closed neighborhood base, S_1 is regular.

- (2) Clearly, S_2 is a Hausdorff space by the construction of the topology of S_2 . However, S_2 is not regular, since the point a can not be separated from the closed subset A by disjoint open subsets of S_2 .
- (3) Now, we show that S_2 is \mathcal{K} -starcompact. For this end, let \mathcal{U} be an open cover of S_2 . Without loss of generality, we assume that \mathcal{U} consists of basic open sets of S_2 . Since \mathcal{U} is an open cover of S_2 , there exists a $U_a \in \mathcal{U}$ such that $a \in U_a$. By assumption, there exists a finite subset F of A such that

$$U_a = U_a(F) = \{a\} \cup \{\langle a_\alpha, b_n \rangle : a_\alpha \in A \setminus F, n \in \omega\}$$

by the definition of the topology of S_2 , thus we have

$$U_a \subseteq St(a, \mathcal{U}).$$

For each $a_{\alpha} \in F$, let

$$B_{\alpha_{\alpha}} = \{a_{\alpha}\} \cup \{\langle a_{\alpha}, b_{n} \rangle : n \in \omega\}.$$

Then, $B_{a_{\alpha}}$ is a compact subset of S_2 by the definition of the topology of S_2 . On the other hand, for each $a_{\alpha} \in A \setminus F$, there exists a $U_{a_{\alpha}} \in \mathcal{U}$ such that $a_{\alpha} \in U_{a_{\alpha}}$. Thus there exists a $\alpha_n \in \omega$ such that

$$\langle a_{\alpha}, b_{\alpha_n} \rangle \in U_{a_{\alpha}}.$$

Let $C = \{\langle a_{\alpha}, b_{\alpha_n} \rangle : a_{\alpha} \in A \setminus F \}$. Then, $C \cup \{a\}$ is a compact subset of S_2 by the definition of the topology of S_2 and

$$A \setminus F \subseteq St(C \cup \{a\}, \mathcal{U}).$$

If we put

$$K = \{a\} \cup C \cup \{B_{a_{\alpha}} : a_{\alpha} \in F\}.$$

Then, K is a compact subset of S_2 such that

$$S_2 = St(K, \mathcal{U}),$$

which shows that S_2 is \mathcal{K} -starcompact.

We assume that $S_1 \cap S_2 = \emptyset$. Since $|\mathcal{R}| = \mathfrak{c}$, we can enumerate \mathcal{R} as $\{r_{\alpha} : \alpha < \mathfrak{c}\}$. Let $\varphi : A \to \mathcal{R}$ be a bijection by

$$\varphi(a_{\alpha}) = r_{\alpha}$$
 for each $\alpha < \mathfrak{c}$.

Definition 2.4. Let X be the quotient space obtained from the discrete sum $S_1 \oplus S_2$ by identifying a_{α} with r_{α} for each $\alpha < \mathfrak{c}$.

Let $\pi: S_1 \oplus S_2 \to X$ be the quotient map. Since \mathcal{R} is a discrete closed subset of S_1 , then S_1 is not $1\frac{1}{2}$ -starcompact by Lemma 2.1. Let $Y = \pi(S_1)$. Then, Y is not $1\frac{1}{2}$ -starcompact, hence it is not \mathcal{K} -starcompact, since every \mathcal{K} -starcompact space is $1\frac{1}{2}$ -starcompact. But it is homeomorphic to S_2 .

Lemma 2.5. The following statements hold:

- (1) Y is a regular closed G_{δ} -subset of X;
- (2) X is K-starcompact.

Proof. (1) Clearly, Y is a regular closed subset of X. Let

$$U_n = \pi(S_1 \cup \{\langle a_{\alpha}, b_m \rangle : m > n, \alpha < \mathfrak{c}\})$$
 for each $n \in \omega$.

Then, U_n is open in X and $Y = \bigcap_{n \in \omega} U_n$. Then, Y is a regular closed G_{δ} -subset of X.

(2) Now, we show that X is K-starcompact. For this end, let \mathcal{U} be an open cover of X. Thus, it is sufficient to show that there exists a compact subset K of X such that $X = St(K, \mathcal{U})$. By the above proof, S_2 is K-starcompact. Since $\pi(S_2)$ is homeomorphic to S_2 , then $\pi(S_2)$ is K-starcompact, hence there exists a compact subset F_1 of $\pi(S_2)$ such that

$$\pi(S_2) \subseteq St(F_1, \mathcal{U}).$$

On the other hand, for every infinite subset F of D, there exists a $r \in \mathcal{R}$ such that $F \cap r$ is infinite, since \mathcal{R} is a maximal almost disjoint family of infinite subsets of D. Hence, $\{r\}$ is an accumulation point of F by the construction of the topology of S_1 . Since $\pi(S_1)$ is homeomorphic to S_1 , then every infinite subset of $\pi(D)$ has an accumulation point in $\pi(S_1)$. Hence, there exists a finite subset F_2 of $\pi(S_1)$ such that

$$\pi(D) \subseteq St(F_2, \mathcal{U}).$$

For if $\pi(D) \nsubseteq St(B,\mathcal{U})$ for any finite subset B of $\pi(D)$, then, by induction, we can define a sequence $\{x_n : n \in \omega\}$ in $\pi(D)$ such that $x_n \notin St(\{x_i : i < n\}, \mathcal{U})$ for each $n \in \omega$. By the property of $\pi(S_1)$ mentioned above, the sequence $\{x_n : n \in \omega\}$ has an accumulation point x_0 in $\pi(S_1)$. Pick $U \in \mathcal{U}$ such that $x_0 \in U$. Choose $n < m < \omega$ such that $x_n \in U$ and $x_m \in U$. Then, $x_m \in St(\{x_i : i < m\}, \mathcal{U})$, which contradicts the definition of the sequence $\{x_n : n \in \omega\}$.

Let $K = F_1 \cup F_2$. Then, K is a compact subset of X such that

$$X = St(K, \mathcal{U}).$$

This shows that X is K-starcompact. Thus, we complete the proof.

Remark. The author does not know if there exists an example in ZFC (here, it means without any set-theoretic assumption) showing that a regular closed G_{δ} -subset (or zero-set) of a \mathcal{K} -starcompact Tychonoff space is $1\frac{1}{2}$ -starcompact.

Acknowledgements. The author would like to thank the referee for his kind help and valuable comments.

References

- E. K. van Douwn, G. M. Reed, A. W. Roscoe, and I. J. Tree, Star covering properties, Topology and its Appl. 39 (1991), 71–103.
- [2] R. Engelking, General topology, revised and completed edition, Heldermann Verlag, Berlin, 1989.
- [3] S. Ikenaga and T. Tani, On a topological concept between countable compactness and pseudocompactness, Research Reports of Numazu Technical College 26 (1990), 139–142.
- [4] M. V. Matveev, A survey on star-covering properties, Topological Atlas, preprint No 330, 1998.
- [5] S. Mrówka, On complete regular spaces, Fund. Math. 41 (1954), 105–106.
- [6] Y.-K. Song, On some questions on star covering properties, Q and A in General Topology 18 (2000), 87–92.
- [7] ______, A study of star-covering properties in topological spaces, Ph. D. Thesis, Shizuoka University, Japan, 2000.

INSTITUTE OF MATHEMATICS
SCHOOL OF MATHEMATICS AND COMPUTER SCIENCES
NANJING NORMAL UNIVERSITY
NANJING 210097, P. R. CHINA
E-mail address: songyankui@njnu.edu.cn