Commun. Korean Math. Soc. 22 (2007), No. 4, pp. 547-552

DIMENSIONS OF DISTRIBUTION SETS IN THE UNIT
INTERVAL

IN S00 BAEK

ABSTRACT. The unit interval is not homeomorphic to a self-similar Can-
tor set in which we studied the dimensions of distribution subsets. How-
ever we show that similar results regarding dimensions of the distribution
subsets also hold for the unit interval since the distribution subsets have
similar structures with those in a self-similar Cantor set.

1. Introduction

We ([1]) studied the Hausdorff and packing dimensions of some distribution
subsets in a self-similar Cantor set. Instead of computing the spherical density
of the point in the distribution subset, we calculated its cylinder density since
their values of densities are equivalent to each other. They have same values
since the gaps between fundamental intervals are uniformly bounded away from
zero. Similarly we also apply the arguments used in [1] to the computation of
dimensions of distribution subsets in the unit interval. In this case, we find that
the cylinder density and the spherical density of the point in the unit interval
do not coincide. Still we can apply its cylinder density to find the dimensions
of distribution subsets in the unit interval. We note that the cylinder density
gives the information of Hausdorff and packing dimensions since the family of
cylinders are a bounded Vital covering ([4, 7]) of the unit interval.

2. Preliminaries

We recall a generalized expansion of a number in [0,1] ([4, 7]). For each
n = 1,2,... let k, > 2 be an integer and choose values 0 < ap; < ---
< Qpg,—1 < 1, setting ang = 0 and any, = 1. The initial proportions
Q1,1,---,01 k1 determine a division of [0,1] into the disjoint intervals [y 5,
ai,it1), i =0,1,...,k — 2, and [a1 &, —1,1]. We will indicate that a point z in
[0,1] falls into the it interval (1 =0,1,...,k — 1) by the notation I (z) = i.
I (z) will be the first term in the expansion of z (with respect to the choices

Received May 30, 2007.

2000 Mathematics Subject Classification. Primary 28A78, Secondary 28A80.

Key words and phrases. Hausdorff dimension, packing dimension, distribution set,
bounded Vitali covering.

©?2007 The Korean Mathematical Society
547



548 IN SOO BAEK

Qn,s). At the second stage each interval {z : I (x) = i} is divided into k5 disjoint
subintervals determined by the given proportions as 1,...,a2%,—1. This splits
[0,1] into k1ke disjoint intervals which are most conveniently expressed in the
form {z : I(z) = 4, I>(z) = 5} for some choice of i = 0,1,...,k — 1 and j =
0,1,...,k2 — 1. Letting d, ; = atp,i+1 — Qi for each n and ¢, we can alternately
write {z: [1(z) =i, L(z) =j} ={z: a1t o ;di; <z <1+ dii}
(but including the right hand endpoint if i = k; — 1 and j = ky — 1). L(2)
will be the second term in the expansion of z. Each interval {z : I(z) =
i,I2(x) = j} is then divided according to the proportions as1,...,03 k,—1-
Continuing this subdivision process, the nth stage produces a splitting of [0, 1]
into kyky - - -k, disjoint intervals {z : I,(z) = iy, L(z) = ia,..., [.(5) = in}
={z i tagidi, toasgdaidi + oo tomdn, o+t dig, <
T < aiy +agdig + o+ ang41dn—14,_,+ -~ + di;, . The sequence
Ii(z), I(z), ... is the generalized expansion of x, taking values in the countable
set S =1{0,1,...,kn—1:n=1,2,...}. If r > 2is a positive integer and k,, = r,
i = L for each n, then the result is the usual r—adic expansion of . (If z has
more than one r-adic expansion, this method produces the terminating one.)

Let N be the set of natural numbers. In this paper, we restrict k, = 2
for all n € N and a,; = a for each n with 0 < a < 1. In this case, the
generalized expansion of a number in {0,1] will be called a generalized dyadic
ezpansion of the number. We denote a fundamental interval or a cylinder
{:L‘ : Il(m) = il,lg(m) = ig,.. .,Ik(.’l,‘) = Zk} by Iilv“yik where ij S {0,1} and
1 < j < k. Sometimes we use the notation F, in which the point in [0, 1] has
a generalized dyadic expansion with a, 1 = a for each n to distinguish it from
another one in which the point in [0, 1] has different a,; from a for each n.
We note that the point in F% has the dyadic expansion.

We note that if z € F,, then there is a generalized dyadic expansion
o € {0,1}" such that N}2, I = {z} (Here olk = i1,i2,...,i; where 0 =
01,82, .. .,0k, k41, - ..). Without confusion, we identify z € F, with o € {0,1}¥
where (2, Ix = {z}. If z € [0,1] and z € I, where 7 € {0,1}*, a cylinder
cx(z) denotes the fundamental interval I and |cx ()| denotes the diameter of
cx(z) for each £k =0,1,2,....

From now on dim(E) denotes the Hausdorff dimension of E and Dim(E)
denotes the packing dimension of E([6]). We note that dim(E) < Dim(E) for
every set E([6]). We denote ng(z|k) the number of times the digit 0 occurs in
the first & places of z = o(cf. [1]).

In F,, for r € [0, 1], we define the lower(upper) distribution set F(r)(F(r))
containing the digit 0 in proportion r by
F(r)y={xz€[0,1]: Iminf@ =r},

i
k—roo

F(r) = {x € [0,1] : lim sup —@@ =r}.

k—o0
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We write F(r)NF(r) = F(r) and call it the distribution set containing the digit
0 in proportion 7. Let p € (0,1) and denote =, a self-similar Borel probability
measure on [0, 1] satisfying v,(Ip) = p (cf. [1, 6]). We write E® (ng)) for the
set of points at which the lower(upper) local cylinder density of -y, on [0, 1] is
exactly a, so that

.. o logyp(er(x))
EP) = 1]:1 =N =
& {z €[0,1] im inf 08 [cx ()| al,

() . log vp(ck(z))
E, ={z€][0,1] : limsup —————F-+ = o}.
teelo. e loglex(2)] J

We write £P) 0 E(lp) = E¥ and call it the local dimension set having local

cylinder density o by a self-similar measure 7,. In this paper, we assume that
0log0 = 0 for convenience.

3. Main results

Without any additional condition, we assume that the distribution sets and
local dimension sets are in F},.

Lemma 1. Let p € (0,1) and consider a self-similar measure -y, on [0,1] and

letr € [0,1] and g(r,p) = HSEEQ=rL 8B Then
(1) forO0<p<a

. onolzlk) . Jlogyp(en()
R T T Y g fa@l Y0P
(2) fora<p<1
. mo(z|k) . log v, (cx (7))
liminf ——— =7 <= limsuyp ————F——= = np),
minf = 2P ogles] 0P
3) for0<p<a
1
lim sup no(z|k) =r <= limsup ——~—Ogvp(6k(w)) = g(r,p),
k—oo k k—oo  l0g|Ck (I)l
(4) fora<p<1
, no(x|k) . logyp(er(n))
1 =r <1 f =———2 =g(r,p).
prov i e e R

Proof. Tt follows from the same arguments in the proof of the lemma 1 in
[1]. O
Theorem 2. Let g(r,p) = :;Zggig::g izig:% and let r € [0,1}. Then

(1) F(r) = E® yif0<p<a,

=g(r,p

2) E(r) =B, fa<p<1,
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@) F(r)=E®_ ifo<p<a,

Ey(r.p)
@ F(r)=E®  ifa<p<l.
Proof. It is immediate from the above Lemma. O

Corollary 3. Let 6(p) = ;’}Zgﬁg:g;}g:g:g;. Then

(1) E(p) =B ifo<p<a,
(2) E(p) = ff;) ifa<p<l,
(3) F(p) = 5(p) if0<p<a,
(4) F(p) = Ef;?)zfa<p<1

Proof. Tt is immediate from the above Theorem with r = p. O

Since the family of our cylinders are a bounded Vital covering ([4, 7]) of
the unit interval, we can apply the cylinder density theorem to the following
Corollary.

Corollary 4. Let J(p) = plogptil-p)log(l=p) ~ppep

T ploga+(1—p)log(l—a)"’
(1) dim(E(p)) = dim(F(p)) = : d(p) and Dim(F(p)) = (p) if0<p<a,
(2) dim(E(p)) = dim(F(p ;) 4(p) and Dim(E(p)) =6(p) fa<p <1,

(3) dim(F(a)) = dlm( (a)) = 1 and Dim(F(a)) = Dim(F(a)) =
Proof. Tt follows from the same arguments in the proof of the corollary 5 in [1]
together with the theorem 4.3 with its dual results of the remark 4.5 in [7]. O

Theorem 5. dim(£(0)) = 0, Dim(F(0)) = 0, Dim(F(1)) = 0 and dim(F(1)) =
0.

Proof. It follows from the same arguments in the proof of the theorem 6 in
[1]. O

Remark 1. Noting that dim(E) < Dim(E) for every set E, we easily see that
dim(F(0)) = 0 and dim(F (1)) = 0.
Remark 2. F(0) N F(1) in Fy is comeager in [0,1] ([8]). In this case Olsen

([8]) used non-terminating expansion. However F(0) N F(1) is the same set
with ours since the points which can be expressed as both non-terminating
and terminating expansion are in F(0) of Olsen’s definition and F(1) in our
definition respectively which are disjoint with F(0) N F(1) of either of the
definitions.

Theorem 6. Dim(F(0)) = 1 and Dim(F(1)) =
Proof. Clearly F(0) N F(1) in F, is homeomorphic to F(0)NF(1) in Fy. Since

F(0)nF(1) in Fy is comeager in [0, 1] ([8]), we see that F(0) N F(1) in F, is
also comeager in [0,1]. It follows from the Exercise (1.8.4) in [5]. 0O
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Remark 3. If o is given as the cylinder density of +y,, then we can solve r € [0, 1]
of the equation a = g(r, p). Then ng (Eff)) can be expressed as one of F(r)
and F(r). If we apply Theorem 2 to this information, then we have Hausdorff
and packing dimensions of E® (—E—Exp)). This gives the following Corollary.

Corollary 7. Let p € (0,1) and p # a. Let a be in [%,%%—Z%]

log(1—p} logp . . _ rlogpt+(1—r)log(1—p)
[@1—_—5%,1;;‘—&]. For the solution v of the equation o = o0 T —)Tog(1=a)

and §(r) = HeEEi=metoT),

1) dim(E®) = dim(EY) = dim(EP) = dim(F(r)) = 6(r),

(2) Dim(E¥)) = Dim(F(r)) = 6(r),

3 )Dlm(E(p)) §r)ifo<p<awitha<r<lora<p<luwith0<r<aq,
(4) Dim(E,, ) dr)if0<p<awith0<r<aora<p<luwitha<r<l,
(5) dim(E_§“>) — dim(E\”) = Dim(E!®) = Dim(E\"”) =

Proof. Tt follows from the same arguments in the proof of the corollary 7 in
). O

Remark 4. F(= F,) is completely decomposed into classes by the lower and
upper distribution sets as F' = Ug<p<1F(p) and F' = Uospglf(p). Similarly
F(= F,) is completely decomposed into classes by the lower and upper local
cylinder densities of self-similar measure 7, as

F=U,_ 1os1-0) M]E;’) if0<p<a,

log(l—a)’loga

F = Uae[logp log(l—p)]E&p) if a < p < 1,

Tog @ ' Tog(i—a)

F=U, s mlﬁf) it0<p<a,

log(l1—a)’loga

F=U, o logu_p)]Fff) ifa<p<l.

log a ’log(l1—a)

Remark 5. In the view of [2, 3], we see that Dim(F(p)) =1if 0 <p < a, and
Dim(F(p))=1lifa<p< 1.
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