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A COMMON FIXED POINT THEOREM IN TWO M-FUZZY
METRIC SPACES

SHABAN SEDGHI AND NABI SHOBE

ABSTRACT. In this paper, we give some new definitions of M-fuzzy metric
spaces and we prove a common fixed point theorem for six mappings
under the condition of compatible mappings of first or second type in two
complete M-fuzzy metric spaces.

1. Introduction and preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [20] in 1965.
Since then, to use this concept in topology and analysis many authors have ex-
pansively developed the theory of fuzzy sets and application. George and Veera-
mani [6] and Kramosil and Michalek [9] have introduced the concept of fuzzy
topological spaces induced by fuzzy metric which have very important applica-
tions in quantum particle physics particularly in connections with both string
and €(*) theory which were given and studied by El Naschie [2, 3, 4, 5, 17].
Many authors [8, 12, 15] have proved fixed point theorem in fuzzy (probabilis-
tic) metric spaces. Vasuki [18] obtained the fuzzy version of common fixed
point theorem which had extra conditions. In fact, Vasuki proved fuzzy com-
mon fixed point theorem by a strong definition of Cauchy sequence (see Note
3.13 and Definition 3.15 of [6] also [16, 19]). In this paper, we prove a common
fixed point theorem in fuzzy metric spaces for arbitrary t-norms and modified
definition of Cauchy sequence in George and Veeramani’s sense. There have
been a number of generalizations of metric spaces. One such generalization is
generalized metric space or D-metric space initiated by Dhage [1] in 1992. He
proved some results on fixed points for a self-map satisfying a contraction for
complete and bounded D-metric spaces. Rhoades [10] generalized Dhage’s con-
tractive condition by increasing the number of factors and proved the existence
of unique fixed point of a self-map in D-metric space. Recently, motivated by
the concept of compatibility for metric space, Singh and Sharma [14] intro-
duced the concept of D-compatibility of maps in D-metric space and proved
some fixed point theorems using a contractive condition.
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In what follows (X, D) will denote a D-metric space, N the set of all natural
numbers, and RT the set of all positive real numbers.

Definition 1.1. Let X be a nonempty set. A generalized metric (or D-metric)
on X is a function: D : X® — Rt that satisfies the following conditions for
each x,y,z,a € X.

(1) D(z,y,z) >0,

(2) D(z,y,z) =0if and only if z = y = 2,

(3) D(=z,y,z) = D(p{z,y,z}), (symmetry) where p is a permutation func-
tion,

(4) D(z,y,2) < D(z,y,a) + D(a, z,2).

The pair (X, D) is called a generalized metric (or D-metric) space.

Immediate examples of such a function are
(a) D(z,y,2) = max{d(z,y), d(y, z),d(z,2)},
(b) D(z,y,z) = d(z,y) + d(y,z) + d(z, 7).
Here, d is the ordinary metric on X.

(c¢) If X = R™ then we define

D(z,y,2) = |z — || + Iy — 2lP + ||z — «|I?)>

for every p e RT.
(d) If X = R* then we define

0 ifte=y=nz2,
max{z,y,z} otherwise .

-M%%ﬂz{

Remark 1.2. In a D-metric space, we prove that D(z,z,y) = D(z,y,y). For
(i) D(z,2,y) < D(z,z,2) + D(z,y,y) = D(z,y,y) and similarly
(i) D(y,y,2) < D(y,y,y) + D(y,z,2) = D(y,z, ).
Hence by (i), (ii) we get D(z,z,y) = D(z,y,y).

Let (X, D) be a D-metric space. For r > 0 define
Bp(z,r) ={y € X : D(z,y,y) <r}

Example 1.3. Let X = R. Denote D(z,y,2) = [z —y|+ |y — 2| + |z — z| for
all z,y,z € R. Thus

Bp(1,2) {y e R: D(1,y,y) <2}
{fyeR:jy-1]+]y-1] <2}

= {yeR:jy-1<1}=(0,2).

Definition 1.4. Let (X, D) be a D-metric space and 4 C X.

(1) If for every x € A there exist r > 0 such that Bp(z,r) C A, then subset
A is called open subset of X.

(2) Subset A of X is said to be D-bounded if there exists r > 0 such that
D(z,y,y) <rforall z,y € A.

Il
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(3) A sequence {z,} in X converges to z if and only if D(xn,2n,z) =
D(z,z,2,) — 0 as n — oo. That is for each € > 0 there exist np € N
such that

(%) Vn > ng => D(z,z,2,) <€

This is equivalent with, for each € > 0 there exist ng € N such that
(¥%) Yn,m > ng = D(z, %, 2m) <€

Indeed, if have (x), then

D(Zpn, Tm,2) = D(Tn, 2, 2m) < D(n,z,2) + D(T, L, Tm) < % + % =ec.

Conversely, set m = n in (x*) we have D(z,,,Z,,2) < €.

(4) Sequence {z,} in X is called a Cauchy sequence if for each € > 0, there
exits ng € N such that D(z,,Zn,Tn) < € for each n,m > ng. The D-metric
space (X, D) is said to be complete if every Cauchy sequence is convergent.

Let 7 be the set of all A C X with z € 4 if and only if there exist r > 0

such that Bp(z,r) C A. Then 7 is a topology on X (induced by the D-metric
D).

Lemma 1.5. Let (X, D) be a D-metric space. If r > 0, then ball Bp(x,r) with
center £ € X and radius v is open ball.

Proof. Let z € Bp(z,r), hence D(z,2,2) < r. If set D(z,2,2) = ¢ and 7' =
r — & then we prove that Bp(z,r') C Bp(z,r). Let y € Bp(z,r'), by triangular
inequality we have D(z,y,y) = D(y,¥,7) < D(y,y,2)+D(z,z,2) <r'+6 =r.
Hence Bp(z,r') C Bp(z,r). That is ball Bp(z,r) is open ball. O

Lemma 1.6. Let (X, D) be a D-metric space. If sequence {zn} in X converges
to =, then x is unique.

Proof. Let &, — y and y # z. Since {z,} converges to z and y, for each
€ > 0 there exist n; € N such that for every n > ny = D(z,z,7,) < 5 and
ns € N such that for every n > no = D(y,y,2n) < 5.
If set ng = max{ny,na}, then for every n > ng by triangular inequality we
have e e
D(x,w,y) < D($7.T,:L'n) +D(xn,y,y) <3+ 5 =¢.

Hence D(z,z,y) = 0 is a contradiction. So, z = y. O

[\

Lemma 1.7. Let (X, D) be a D-metric space. If sequence {x,} in X is con-
verges to x, then sequence {x,} is a Cauchy sequence.

Proof. Since z,, — z for each € > 0 there exists

ny € Nsuch that for everyn > ny = D(xn, Tn, ) <

N

and
€
ns € Nsuch that for everym > ny = D(x,Zm, Tm) < 3
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If set ng = max{ny,na}, then for every n,m > ng by triangular inequality we
have

D(Zp,Tp, Tm) < D(Tn, Zn,2) + D(2, 80, Tm) < §+ 5 =€ Hence sequence
{z,} is a Cauchy sequence. O

Definition 1.8. A binary operation * : [0,1] x [0,1] — [0,1] is a continuous
t-norm if it satisfies the following conditions

(1) * is associative and commutative,

(2) = is continuous,

(3) ax1=aforall acl0,1],

(4) axb < cx*d whenever a < ¢ and b < d for each a,b,c,d € [0,1].

Two typical examples of continuous t-norm are axb = ab and axb = min(a, b).

Definition 1.9. A 3-tuple (X, M, x) is called a M-fuzzy metric space if X is
an arbitrary (non-empty) set,  is a continuous t-norm, and M is a fuzzy set
on X? x (0,00), satisfying the following conditions for each z,y,2,0 € X and
t,s >0, :

(1) M(z,y,2,1) >0,

(2) M(z,y,2,t)=1ifandonlyif z =y = 2,

(3) M(z,y,2,t) = M(p{z,y,2},t),(symmetry) where p is a permutation
function,

(4) M(way70’7t) *M(G,Z,Z,S) < M(x,y,z,t+ 8)7

(5) M(z,y,z,.):(0,00) — [0,1] is continuous.
Remark 1.10. Let (X, M, %) be a M-fuzzy metric space. We prove that for
every t > 0, M(x,z,y,t) = M(z,y,y,t). Because for each e > 0 by triangular
inequality we have

(i) M(z,2,y,e+1) > M(z,z,2,¢) * M(2,9,9,1) = M(z,9,3,1)

(i) My, y,z,e+1) > M(y,y,y,€) x M(y, z,2,t) = My, z, 2, 1).

By taking limits of (i) and (ii) when e — 0, we obtain M(z,z,y,t) =
M(m’ y7y7 t)'

Let (X, M, ) be a M-fuzzy metric space. For ¢ > 0, the open ball Ba(z,r,1)

with center z € X and radius 0 < r < 1 is defined by
BM(IB,T‘,t) = {y €X: M(:U,y,y,t) >1- T’}.
A subset A of X is called open set if for each € A there exist £ > 0 and
0 < r < 1 such that Bay(z,7,t) C A. A sequence {z,} in X converges to z
if and only if M(z,z,2n,t) — 1 as n — oo, for each t > 0. It is called a
Cauchy sequence if for each 0 < e < 1 and t > 0, there exist ng € N such that
M(Zr, Ty Ty t) > 1 — € for each n,m > ng. The M-fuzzy metric (X, M, %) is
said to be complete if every Cauchy sequence is convergent.
Example 1.11. Let X be a nonempty set and D be the D-metric on X.
Denote a * b = a.b for all a,b € [0,1]. For each t €]0, co], define
t

M(@y,2,0) = T pr——
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for all z,y,z € X. It is easy to see that (X, M, x) is a M-fuzzy metric space.

Lemma 1.12. Let (X, M, *) be a fuzzy metric space. If we define M X3 x
(0,00) — [0,1] by
M(z,y,z,t) = M(z,y,t) * M(y,z,t) x M(2,2,t)
for every x,y,z in X, then (X, M, x) is a M-fuzzy metric space.
Proof.

(1) It is easy to see that for every z,y,z € X, M(z,y,2,t) >0Vt >0.

(2) M(z,y,2,t) = 1 if and only if M(z,y,1) = M(y,z,t) = M(z,z,t) = 1if
and only if z =y = 2.

(3) M(z,y,2,t) = M(p{z,y,2},t), where p is a permutation function.
Mz, y,t+8)*« M(y,z,t+ )« M(z,2,t + 3)

(z,y,t) * M(y,a,t)« M(a,z,s)x M(z,a,s) * M(a,z,t)
(z,y,a,t) % M(a,2,8)* M(z,a,s)* M(z,2,5)
(z,y,a,t)* M(a,z,z,5) for every t,s > 0.

z,y,2,t+8)

AV

M
M
M

O

Definition 1.13. Let (X, M, *) be a M-fuzzy metric space, then M is called
of first type if for every ,y € X we have

M(z,z,y,t) > M(z,y,2,t)

for every z € X.
Also it is called of second type if for every z,y,z € X we have

M(z,y, z,t) = M(x,y.t) * M(y,z,t) * M(z, x,1).

Let a * b = min(a, b) for every a.b € [0,1] in this case it is easy to see that,
if M is second type then M is first type.

Example 1.14. If we define M(z,y,2,t) = TD(Z—Z‘/’Z_) where D(z,y,2) =
d(z,y) +d(y,z) + d(z, ), or define
1 fe=y=z%,
M(z,y,2,t) = { m otherwise ,
then M is first type.
If (X, M, *) is a fuzzy metric and M(z,y,t) = md_fw_yj’ then
t t

M($’y7z7t) =

t+d(z,y) * t+d(y,z) * t+d(z,2)

is second type.
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Remark 1.15. Let (X, M, x) be a M-fuzzy metric space. If M is second type,
sequence {z,} in X converges to z if and only if M(z,z,z,,t) — 1 or if and
only if M(z,z,,t) — 1. For
Mz, 2, 2,,t) = M(z,3,t) % M(2,2,,t) * M (2, Tq,1)
= M(z,zn,t) * M(z,zn,1).

2. The main results

Lemma 2.1. Let (X, M, *) be a M-fuzzy metric space. Then M(x,y,z,t) is
nondecreasing with respect to t, for all x,y,z in X.

Proof. By Definition 1.9(4) for each z,y,2,a € X and t,s > 0 we have
M(z,y,a,t) * M(a, z,2,3) < M(z,y,2,t + 3).

If set a = 2z we get M(xz,y,2,t) x M(z,2,2,5) < M(z,y,2,t + s), that is,
M(z,y,2,t + 5) > M(z,y,2,1). o

Definition 2.2. Let (X, M, x) be a M-fuzzy metric space. M is said to be
continuous function on X3 x (0, 00) if

lim M(zn? yn’ Zn, tn) = M(w7 y’ z’ t)‘

n—>00
Whenever a sequence {(Tn,¥n,2n,tn)} in X x (0,00) converges to a point
(z,y,2,t) € X3 x (0,00) i.e.,
lim z, =z, lim y, =y, lim 2z, =z and lim M(z,y,z,t,) = M(z,y,2,t).
n—ro0 n—00 n—oo n—oo

Lemma 2.3. Let (X, M, x) be a M-fuzzy metric space. Then M is continuous
function on X3 x (0, 00).

Proof. Let ©,y,z € X and ¢t > 0, and let (z! , 3", 2! t' ), be a sequence in X3 x
(0, 00) that converges to (z,y, z,t). Since (M(zl,,y,, 25, t,))n is a sequence in
(0, 1], there is a subsequence (2., Yn, 2n, tn)n Of sequence (x;,, 4., 2, t,)n Such
that sequence (M(Zn,Yn, 2n,tn))n converges to some point of [0,1]. Fix § > 0
such that § < % Then, there is ng € N such that |t — ¢,,| < é for every n > no.

Hence,

M(Zn, Yn, Zn, tn)

2 M(:Ens ynaZTHt - 6) _>_ M(Inﬁynazat - 4-??) * M(Z’ Zny Zny g)
56 ) 1)
2 M(xn,z,y,t - E’) * M(yayn’yna g) * M(zaznazn; g)
> Mz, = 20) « M@, 20,2, )+ M s 3) 5 M2, 5)
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and

M(z,y,z,t + 26)

]
> M2t +0) 2 M, 2t + ) M52 )

0 ) é
> M(Z,2n,Ynstn + 5) * M(Yn, ¥, Ys 5) * M(2n, 2, 2, -?;)

1) é )
2 M(zn;y'mmnvtn) * M(Inamvma g) * M(ynsyaya g) * M(znvz7z7 —?;)

for all n > ng. By taking limits when n — oo, we obtain

lim M(Zn, Yn, Znytn) > M(2,y, 2,6 —20) x 1 x1x1 = M(z,y,z,t — 20)

n—roo

and
M(z,y,z,t+26) > le M(:cn,yn,zn,tn)l*l*l—’: li_>m M(xnaymzmtn)v

respectively. So, by continuity of the function ¢ — M(z,y,z,t), we immedi-
ately deduce that

lim M($nvynazn7tn) = M(w,y,z,t).

n—+0o0

Therefore M is continuous on X* x (0, 00). O

Henceforth, we assume that * is a continuous t-norm on [0,1] such that for
every u € (0,1), there is a A € (0,1) such that

n

™
— "~

A=N*1=XN*--*x1=A)>21—p

Lemma 2.4. Let (X, M, *) be a M-fuzzy metric space. If we define Ex a
X3 5 RY U {0} by

Exm(z,y,2) =inf{t >0 : M(z,y,z,t) > 1= A}
for every A € (0,1), then
(i) for each p € (0,1) there exists X € (0,1) such that
Eum(21,21,T0)

< Bxm(z1,71,22) + Ex pm(@2, 22, 23) + -+ + Expm(Tn—1,%n-1,%n)

for any xy,%2,...,&n € X,

(i) The sequence {x,}nen is convergent in M-fuzzy metric space (X, M, %)
if and only if Ex pm(ZTn,Tn,z) — 0. Also the sequence {Zn}nen is Cauchy
sequence if and only if it is Cauchy with Ex am-

Proof. (i). For every p € (0,1), we can find a A € (0, 1) such that

n
A

TNl - N#x(1-N>1—p
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by triangular inequality we have

M(z1, 21, Tny Ex @1, 21, 22) + Ex p{@2, T2, 23) + -+
+ Eax pm{@n-1,Tn_1,Tn) +nd)

> M(@1, 21,22, Ex m(21,21,22) + ) % -+
* M(Zp—1,2Zn-1,Zn, Ex mM(@n_1,Zn_1,Tn) + )

n

i
- =~

>{A-Nx1=-XN*---x(1-XN)>1-p

for very § > 0, which implies that

E#,M(wl,wla$n)
< Exm(zr, @1, 22) + Bx m(@2,22,23) + - + Ex pm(Tn—1, Tn-1,n) + nd.

Since § > 0 is arbitrary, we have

EM,M (zlaxlaxn)
< Exm(@y, 2y, 22) + Bam(®o, @2, 23) + - + Ex m(Tno1,Tn1,Zn).

(ii). Note that since M is continuous in its third place and
Expm(z,z,y) =inf{t >0 : M(z,z,y,t) >1- A}
Hence, we have
M(@p,z,3,m) > 1— X = Ex (@, 2,2) <7

for every n > 0. O

Lemina 2.5. Let (X, M, *) be a M-fuzzy metric space. If

M(TnyTn, Trg1,t) > M(zo,x0, 21, k")
for some k > 1 and for everyn € N. Then sequence {x,} is a Cauchy sequence.
Proof. For every A € (0,1) and z,,, Zn41 € X, we have

Exm(@n, n,&nt1) = nf{t >0 @ M(xn,Zn, Tny1,1) > 1— A}
< inf{t >0 : M(zo,z0,21,k"t) >1— A}

= lnf{kt—n>0 : M(mo,$0,$1,t)>1—A}

1.
k—nmf{t>0 : M(zo, xg,21,t) > 1 — A}

1

= k—nEx,M(wo,mo,wl)-
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By Lemma 2.4, for every p € (0,1) there exists A € (0,1) such that

Eym(Tn, Tny Tm)

< Ex m(Tn, Ty Tog1) + Ex m(Trg1, Tagt, Tng2) +- A Ex m(Tm—1,Tm—1,Tm)

1 1 1
< FE)\,M(l'OaZL'Oa-Tl) + WEA,M(JJO,:BO,%) +ot k,n—,l—EA,M(wo,ﬂUo,Il)
m—1

= E,\,M(ﬂfo,wo,ﬂh) Z ]—5 — 0.

j=n

Hence sequence {z,} is Cauchy sequence. d

A class of implicit relation

Let ® denotes a family of mappings such that each ¢ € ®, ¢ : [0,1] — [0,1],
such that ¢ is continuous and ¢(s) > s for every s € [0,1).

Theorem 2.6. Let (X, M,*) and (Y, N, o) be two complete M and N -fuzzy
metric spaces, respectively where M and N are first or second type. If A B,C
be three mappings of X toY and T, S, R be three mappings of Y to X such
that satisfies the following conditions:

(i) M(SAz, TBa',RCz",t) > ¢(M(x,z', 3", ki1t)), for every z, 2, a" e X
someky > 1 and ¢ € @,

(ii) M(CTy, ARy', BSy",t) > ¥(N(y,y',y", kat)), for every y,y',y" € Y
some ko > 1 and ¢ € ®.

If at least A, B, C, T, S or R be continuous mapping, then there exist a unique
point z € X and w € Y ,such that SAz = TBz = RCz = z and ARw = BSw =
CTw = w. Moreover,

Sw=Tw=Rw=z Az=Bz=Cz=w.
Proof. Let o € X be an arbitrary point in X, define
Azo =1y, Sy ==z, Bzi=ys, Tya=1ms, Cxo=ys, and Ry =uas.
So by induction, for n =0,1,2,... we have

AT3n = Y3nt1, SYsnt1 = Tang1, Br3ni1 = Ysn+2,

Ty3n+2 = T3n+2, C$3n+2 = Y3n+3> Rysni3 = T3n+ts.

Now, we prove that {r,} and {y,} are a Cauchy sequence in X and Y respec-
tively. Let

do(t) = M@, Tus1, Togas t).-
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Now, for 3n, we get

d3n ()
= M(Z3n,Z3n+1,T3n+2,1)
= M(Ry3zn, Sysn+1, Tysn+2,1)
= M(RCz3n_1,S5Az3,, T Bxgpt1,t)
= M(SAzx3,,TBz3nt1, RC3n—1,t)
> ¢(M(Z3n, T3n4+1, T3n—1, k1)
> M(x3n_1,T3n, T3n+1, k1t)
= dgn—1(k1t).

For 3n + 1, we have

da3nt1(t) = M(Z3n41, %3012, T3nt3, t) = M(SYznt1, TY3n+2, RYsn+s, 1)
= M(SAz3,, TBx3ni1, RCT3p42,1)
> A M(23n,T3n41, Zans2, k1t))
= M(Z3n,T3n11, T3nt2, k1t) = dan(kit).

Also, for 3n + 2, we get

dant2(t) = M(@3n+42, %3043, Tanta,t)

M(Ty3ny2, RY3ni3, SY3nt4,1)
M(TBzs3,y1, RCx3, 12, SATsnt3,1)
S(M(Z3n+1, T3n+2, T3nt3, k1t))
= M(Z3n11,%3n+2, T3nt3, k1t) = dant1(kit).

nu

v

Hence for every n € N we have d,(t) > dn—1(k1t). That is,

dn(t) = M(Zn, Tnt1, Tnt1, t)
> M(Tpo1,Tn, Tng1, kit) > -+ > M(xo, 71,2, kT't)-
Since M is a first or second type, hence by Remark 1.15 {z,} is Cauchy and

the completeness of X, {z,} converges to z in X. That is, lim,_,o Tn = 2.
Let

Ln(t) = N(yn7 Ynt1,Yn+2, t)

Now, for 3n, we get

Lsn(t) = N(Ysn, Ysnt1,Ysnt2,t) = N(Cx3n_1, AT3,, BT3ni1,1t)
N(CTysn—1, ARy3n, BSysni1,t) = N(SAzx3n, TBxsnt1, RC3n_1,1)

YN (Y3n—1,Y3n, Y3nt1, kat)

N(Y3n—1,Y3n, Ysnt1, k2t) = Lzn_1(kot).

(AVARAYS
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For 3n + 1, we have
Lant1(t) = N(Yant1,Ysn+2,Ysna3,t) = N(Az3n, Brani1, CTanya,t)
= N(ARyzn, BSysni1, CTYsnt2,1t)
YN (Y3n, Y3n+1, Y3nt2, kat))
= N(Y3n,Y3n+1,Y3n+2, k2t) = Lan(kat).
Also, for 3n + 2, we get

v

Lsnta(t) = N(Y3n42,Y3n+3,Y3nta,t)

= N(Bzzni2,CT3n43, AT3nta,t)

= N(BSy3ni1,CTYsn+2, ARY3nt3,1)

> PN (Ysnt1,Y3n+2, Yants, kat))
N (Usnt1,Ysn+2: Ysnts, kat) = Lany1 (kat).
Hence for every n € N we have L, (t) > L,_1(kzt). That is,

Lo (t) = N(Yn, Ynt1,Ynt1,1)

> N(Un-1,Un> Ynt1, kat) > -+ > M(Yo,y1,y2, k5t).

Since N is a first or second type, hence by Remark 1.15 {y,} is Cauchy and
the completeness of Y, {y,,} converges to w in Y. That is, limp, 00 yn = w.

Let A is continuous, hence lim,, oo Yni1 = liMp 00 AZzn, = Alimp o0 235 =
Az = w. Now, we prove that SAz = 2. For by (i), we have

M(SAz, TBx3,ni1, RCx3n40,t) > ¢(M(2, 23041, T3nt2, k1t))
On making n — oo we get
M(SAz,z,2,t) > ¢(M(z,2,2,kt)) =¢(1) = 1.
Thus Sw = SAz = z. Now, we prove that Bz = w for
N(CTy3n—_1, ARysn, BSw,t) > (N (Ysn—1,Y3n, w, kat)).

Thus
N(y3nay3n+1aBswat) Z w(N(yiin—l:an;w; k2t))
As n —» oo we have
N(’U),U),BS’LU,t) Z ’l/)(N(’lU,’LU,w,kzt)) = w(l) = ]'

Therefore, BSw = Bz = w. Again, replacing y by ysn-1, ¥’ by w and 3" by
w in (i), we have

N(CTysn_1,ARw, BSw,t) = N (y3n, ARw, BSw,t) > (N (ysn—1,w,w, kat)).
On making n — oo we get

N(w, ARw,w,t) > YN (w,w,w,kst))=1(1)=1.
Thus ARw = w. So

N(CTw, ARw, BSw,t) > (N (w,w,w,kt))=1.
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Therefore, CTw = ARw = BSw = w. Again, replacing z by z, ’ by z and ="
by 3541 in (i), we have
M(RCZ, SAZ, TB.’IT3TL+1, t) Z d)(M(Z, ZyL3n+1, klt)).
On making n — oo we get
M(RCZ,Z,Z,t) Z ¢(M(Z,Z,Z,k1t)) =1

Therefore, RCz = z. Now, we prove that TBz = z for

M(RCz,5A2,TBz,t) > ¢(M(z,z,2z,kit)) = 1.
That is, 7Bz = Tw = z. Hence

TBz=RCz=SAz=z.
Now, we have Cz = CTw = w. So Rw = RCz = z. Hence
TAz=RCz=S5Az=z and CTw= ARw = BSw =w.

Therefore

Az=Bz=Cz=w and Sw=Tw= Rw = z.
Uniqueness, let z’' be another common fixed point of A, B,C. If M(z,z2,7',t) <
1, then

M(z,2,2',t) = M(TAz,RCz,SAZ 1)) > ¢(M(z,2,72', kit))
> M(z,2,2 k)
is a contradiction. Therefore, z = 2’ is the unique common fixed point of self-
maps A, B, C. Similarly we prove that w is unique. Let w' be another common
fixed point of R, S,T. If N(w,w,w',t) < 1, then
Nw,w,w',t) = N(CTw, ARw, BSw',t)) > (N (w,w,w’, kst))
> Nw,w,w', kat)

is a contradiction. Therefore, w = w’' is the unique common fixed point of
self-maps T, R, S. O
Example 2.7. Let X =[0,1], Y =[1,2]. If 5,7, R : [1, 2] = [0, 1] defined

T 1 if y is rational, 1 if y is rational,
0 ify is irrational 5 if y is irrational.

1

1 if y is rational,
Sy = . ..
5 if y is irrational

Moreover, if A, B,C : [0,1] — [1,2], defined Az = 2 and

2 if z is rational, 2 if z is rational,
1 if & is irrational. 5 if £ is irrational.
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Let M,N,¢ and % be choice, such that A, B,C and T, R, S satisfying in the
above theorem. Then it is easy to see that,Al = Bl=Cl1=2and T2 = 52 =
R2 =1. Hence

BS2=AR2=CT2=2 and TB1=SA1=RCl1=1

Corollary 2.8. Let (X, M, %) and (Y,N,o) be two complete M and N -fuzzy
metric spaces, respectively where M and N are first or second type. If f be
a mapping of X to Y and g be a mapping of Y to X such that satisfies the
following conditions:

(1) M(gfz,gfz',gfe",t) > ¢(M(z,2',3", kit)), for every z,z',z" € X
somek, >1 and ¢ € @,

(it) N(fgy, foy's fay" t) > v (N (y,4',y", kat)), for everyy,y',y" € Y some
ko > 1 and ¢ € .

If at least f or g be continuous mapping, then there ewist a unique point
2 € X and w € Y ,such that gfz = z and fgw = w. Moreover,

qw =z fz=w.
Proof. 1t is enough set A = B =C = fand R = S = T = g in Theorem
2.6. O
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