A COMMON FIXED POINT THEOREM IN TWO $\mathcal{M} ext{-}\mathrm{FUZZY}$ METRIC SPACES

SHABAN SEDGHI AND NABI SHOBE

ABSTRACT. In this paper, we give some new definitions of \mathcal{M} -fuzzy metric spaces and we prove a common fixed point theorem for six mappings under the condition of compatible mappings of first or second type in two complete \mathcal{M} -fuzzy metric spaces.

1. Introduction and preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [20] in 1965. Since then, to use this concept in topology and analysis many authors have expansively developed the theory of fuzzy sets and application. George and Veeramani [6] and Kramosil and Michalek [9] have introduced the concept of fuzzy topological spaces induced by fuzzy metric which have very important applications in quantum particle physics particularly in connections with both string and $e^{(\infty)}$ theory which were given and studied by El Naschie [2, 3, 4, 5, 17]. Many authors [8, 12, 15] have proved fixed point theorem in fuzzy (probabilistic) metric spaces. Vasuki [18] obtained the fuzzy version of common fixed point theorem which had extra conditions. In fact, Vasuki proved fuzzy common fixed point theorem by a strong definition of Cauchy sequence (see Note 3.13 and Definition 3.15 of [6] also [16, 19]). In this paper, we prove a common fixed point theorem in fuzzy metric spaces for arbitrary t-norms and modified definition of Cauchy sequence in George and Veeramani's sense. There have been a number of generalizations of metric spaces. One such generalization is generalized metric space or D-metric space initiated by Dhage [1] in 1992. He proved some results on fixed points for a self-map satisfying a contraction for complete and bounded D-metric spaces. Rhoades [10] generalized Dhage's contractive condition by increasing the number of factors and proved the existence of unique fixed point of a self-map in D-metric space. Recently, motivated by the concept of compatibility for metric space, Singh and Sharma [14] introduced the concept of D-compatibility of maps in D-metric space and proved some fixed point theorems using a contractive condition.

Received September 21, 2006.

²⁰⁰⁰ Mathematics Subject Classification. 54E40, 54E35, 54H25.

Key words and phrases. M-fuzzy contractive mapping, complete M-fuzzy metric space, common fixed point theorem.

In what follows (X, D) will denote a D-metric space, \mathbb{N} the set of all natural numbers, and \mathbb{R}^+ the set of all positive real numbers.

Definition 1.1. Let X be a nonempty set. A generalized metric (or D-metric) on X is a function: $D: X^3 \longrightarrow \mathbb{R}^+$ that satisfies the following conditions for each $x, y, z, a \in X$.

- (1) D(x, y, z) > 0,
- (2) D(x,y,z)=0 if and only if x=y=z,
- (3) $D(x,y,z) = D(p\{x,y,z\})$, (symmetry) where p is a permutation function,
 - (4) $D(x, y, z) \leq D(x, y, a) + D(a, z, z)$.

The pair (X, D) is called a generalized metric (or D-metric) space.

Immediate examples of such a function are

- (a) $D(x, y, z) = \max\{d(x, y), d(y, z), d(z, x)\},\$
- (b) D(x, y, z) = d(x, y) + d(y, z) + d(z, x).

Here, d is the ordinary metric on X.

(c) If $X = \mathbb{R}^n$ then we define

$$D(x,y,z) = (||x-y||^p + ||y-z||^p + ||z-x||^p)^{\frac{1}{p}}$$

for every $p \in \mathbb{R}^+$.

(d) If $X = \mathbb{R}^+$ then we define

$$D(x, y, z) = \begin{cases} 0 & \text{if } x = y = z, \\ \max\{x, y, z\} & \text{otherwise .} \end{cases}$$

Remark 1.2. In a D-metric space, we prove that D(x, x, y) = D(x, y, y). For

- (i) $D(x,x,y) \leq D(x,x,x) + D(x,y,y) = D(x,y,y)$ and similarly
- (ii) D(y, y, x) < D(y, y, y) + D(y, x, x) = D(y, x, x).

Hence by (i), (ii) we get D(x, x, y) = D(x, y, y).

Let (X, D) be a D-metric space. For r > 0 define

$$B_D(x,r) = \{ y \in X : D(x,y,y) < r \}$$

Example 1.3. Let $X = \mathbb{R}$. Denote D(x, y, z) = |x - y| + |y - z| + |z - x| for all $x, y, z \in \mathbb{R}$. Thus

$$B_D(1,2) = \{ y \in \mathbb{R} : D(1,y,y) < 2 \}$$

= \{ y \in \mathbb{R} : |y-1| + |y-1| < 2 \}
= \{ y \in \mathbb{R} : |y-1| < 1 \} = (0,2).

Definition 1.4. Let (X, D) be a *D*-metric space and $A \subset X$.

- (1) If for every $x \in A$ there exist r > 0 such that $B_D(x,r) \subset A$, then subset A is called open subset of X.
- (2) Subset A of X is said to be D-bounded if there exists r > 0 such that D(x, y, y) < r for all $x, y \in A$.

(3) A sequence $\{x_n\}$ in X converges to x if and only if $D(x_n, x_n, x) = D(x, x, x_n) \to 0$ as $n \to \infty$. That is for each $\epsilon > 0$ there exist $n_0 \in \mathbb{N}$ such that

$$\forall n \ge n_0 \Longrightarrow D(x, x, x_n) < \epsilon.$$

This is equivalent with, for each $\epsilon > 0$ there exist $n_0 \in \mathbb{N}$ such that

$$(**) \forall n, m \ge n_0 \Longrightarrow D(x, x_n, x_m) < \epsilon.$$

Indeed, if have (*), then

$$D(x_n, x_m, x) = D(x_n, x, x_m) \le D(x_n, x, x) + D(x, x_m, x_m) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \varepsilon.$$

Conversely, set m = n in (**) we have $D(x_n, x_n, x) < \epsilon$.

(4) Sequence $\{x_n\}$ in X is called a Cauchy sequence if for each $\epsilon > 0$, there exits $n_0 \in \mathbb{N}$ such that $D(x_n, x_n, x_m) < \epsilon$ for each $n, m \ge n_0$. The D-metric space (X, D) is said to be complete if every Cauchy sequence is convergent.

Let τ be the set of all $A \subset X$ with $x \in A$ if and only if there exist r > 0 such that $B_D(x,r) \subset A$. Then τ is a topology on X (induced by the D-metric D).

Lemma 1.5. Let (X, D) be a D-metric space. If r > 0, then ball $B_D(x, r)$ with center $x \in X$ and radius r is open ball.

Proof. Let $z \in B_D(x,r)$, hence D(x,z,z) < r. If set $D(x,z,z) = \delta$ and $r' = r - \delta$ then we prove that $B_D(z,r') \subseteq B_D(x,r)$. Let $y \in B_D(z,r')$, by triangular inequality we have $D(x,y,y) = D(y,y,x) \le D(y,y,z) + D(z,x,x) < r' + \delta = r$. Hence $B_D(z,r') \subseteq B_D(x,r)$. That is ball $B_D(x,r)$ is open ball.

Lemma 1.6. Let (X, D) be a D-metric space. If sequence $\{x_n\}$ in X converges to x, then x is unique.

Proof. Let $x_n \longrightarrow y$ and $y \neq x$. Since $\{x_n\}$ converges to x and y, for each $\epsilon > 0$ there exist $n_1 \in \mathbb{N}$ such that for every $n \geq n_1 \Longrightarrow D(x, x, x_n) < \frac{\epsilon}{2}$ and $n_2 \in \mathbb{N}$ such that for every $n \geq n_2 \Longrightarrow D(y, y, x_n) < \frac{\epsilon}{2}$.

If set $n_0 = \max\{n_1, n_2\}$, then for every $n \ge n_0$ by triangular inequality we have

$$D(x, x, y) \le D(x, x, x_n) + D(x_n, y, y) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \varepsilon.$$

Hence D(x, x, y) = 0 is a contradiction. So, x = y.

Lemma 1.7. Let (X,D) be a D-metric space. If sequence $\{x_n\}$ in X is converges to x, then sequence $\{x_n\}$ is a Cauchy sequence.

Proof. Since $x_n \longrightarrow x$ for each $\epsilon > 0$ there exists

$$n_1 \in \mathbb{N}$$
such that for every $n \geq n_1 \Longrightarrow D(x_n, x_n, x) < \frac{\epsilon}{2}$

and

$$n_2 \in \mathbb{N}$$
such that for every $m \geq n_2 \Longrightarrow D(x, x_m, x_m) < \frac{\epsilon}{2}$.

If set $n_0 = \max\{n_1, n_2\}$, then for every $n, m \ge n_0$ by triangular inequality we have

 $D(x_n,x_n,x_m) \leq D(x_n,x_n,x) + D(x,x_m,x_m) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. Hence sequence $\{x_n\}$ is a Cauchy sequence.

Definition 1.8. A binary operation $*: [0,1] \times [0,1] \longrightarrow [0,1]$ is a continuous t-norm if it satisfies the following conditions

- (1) * is associative and commutative,
- (2) * is continuous,
- (3) a * 1 = a for all $a \in [0, 1]$,
- (4) $a * b \le c * d$ whenever $a \le c$ and $b \le d$ for each $a, b, c, d \in [0, 1]$.

Two typical examples of continuous t-norm are a*b = ab and $a*b = \min(a, b)$.

Definition 1.9. A 3-tuple $(X, \mathcal{M}, *)$ is called a \mathcal{M} -fuzzy metric space if X is an arbitrary (non-empty) set, * is a continuous t-norm, and \mathcal{M} is a fuzzy set on $X^3 \times (0, \infty)$, satisfying the following conditions for each $x, y, z, a \in X$ and t, s > 0,

- (1) $\mathcal{M}(x, y, z, t) > 0$,
- (2) $\mathcal{M}(x, y, z, t) = 1$ if and only if x = y = z,
- (3) $\mathcal{M}(x,y,z,t) = \mathcal{M}(p\{x,y,z\},t)$,(symmetry) where p is a permutation function,
 - $(4) \mathcal{M}(x,y,a,t) * \mathcal{M}(a,z,z,s) \le \mathcal{M}(x,y,z,t+s),$
 - (5) $\mathcal{M}(x,y,z,.):(0,\infty)\longrightarrow [0,1]$ is continuous.

Remark 1.10. Let $(X, \mathcal{M}, *)$ be a \mathcal{M} -fuzzy metric space. We prove that for every t > 0, $\mathcal{M}(x, x, y, t) = \mathcal{M}(x, y, y, t)$. Because for each $\epsilon > 0$ by triangular inequality we have

- (i) $\mathcal{M}(x, x, y, \epsilon + t) \ge \mathcal{M}(x, x, x, \epsilon) * \mathcal{M}(x, y, y, t) = \mathcal{M}(x, y, y, t)$
- (ii) $\mathcal{M}(y, y, x, \epsilon + t) \ge \mathcal{M}(y, y, y, \epsilon) * \mathcal{M}(y, x, x, t) = \mathcal{M}(y, x, x, t)$.

By taking limits of (i) and (ii) when $\epsilon \to 0$, we obtain $\mathcal{M}(x,x,y,t) = \mathcal{M}(x,y,y,t)$.

Let $(X, \mathcal{M}, *)$ be a \mathcal{M} -fuzzy metric space. For t > 0, the open ball $B_{\mathcal{M}}(x, r, t)$ with center $x \in X$ and radius 0 < r < 1 is defined by

$$B_{\mathcal{M}}(x,r,t) = \{ y \in X : \mathcal{M}(x,y,y,t) > 1 - r \}.$$

A subset A of X is called open set if for each $x \in A$ there exist t > 0 and 0 < r < 1 such that $B_{\mathcal{M}}(x,r,t) \subseteq A$. A sequence $\{x_n\}$ in X converges to x if and only if $\mathcal{M}(x,x,x_n,t) \longrightarrow 1$ as $n \longrightarrow \infty$, for each t > 0. It is called a Cauchy sequence if for each $0 < \epsilon < 1$ and t > 0, there exist $n_0 \in \mathbb{N}$ such that $\mathcal{M}(x_n,x_n,x_m,t) > 1 - \epsilon$ for each $n,m \ge n_0$. The \mathcal{M} -fuzzy metric $(X,\mathcal{M},*)$ is said to be complete if every Cauchy sequence is convergent.

Example 1.11. Let X be a nonempty set and D be the D-metric on X. Denote a*b=a.b for all $a,b\in[0,1]$. For each $t\in]0,\infty[$, define

$$\mathcal{M}(x,y,z,t) = \frac{t}{t + D(x,y,z)}$$

for all $x, y, z \in X$. It is easy to see that $(X, \mathcal{M}, *)$ is a \mathcal{M} -fuzzy metric space.

Lemma 1.12. Let (X, M, *) be a fuzzy metric space. If we define $\mathcal{M} : X^3 \times (0, \infty) \longrightarrow [0, 1]$ by

$$\mathcal{M}(x, y, z, t) = M(x, y, t) * M(y, z, t) * M(z, x, t)$$

for every x, y, z in X, then $(X, \mathcal{M}, *)$ is a \mathcal{M} -fuzzy metric space.

Proof.

(1) It is easy to see that for every $x, y, z \in X$, $\mathcal{M}(x, y, z, t) > 0 \ \forall t > 0$.

(2) $\mathcal{M}(x,y,z,t)=1$ if and only if M(x,y,t)=M(y,z,t)=M(z,x,t)=1 if and only if x=y=z.

(3) $\mathcal{M}(x, y, z, t) = \mathcal{M}(p\{x, y, z\}, t)$, where p is a permutation function.

(4)
$$\mathcal{M}(x, y, z, t + s) = M(x, y, t + s) * M(y, z, t + s) * M(z, x, t + s)$$

$$\geq M(x, y, t) * M(y, a, t) * M(a, z, s) * M(z, a, s) * M(a, x, t)$$

$$= \mathcal{M}(x, y, a, t) * M(a, z, s) * M(z, a, s) * M(z, z, s)$$

$$= \mathcal{M}(x, y, a, t) * \mathcal{M}(a, z, z, s) \qquad \text{for every } t, s > 0.$$

Definition 1.13. Let $(X, \mathcal{M}, *)$ be a \mathcal{M} -fuzzy metric space, then \mathcal{M} is called of *first type* if for every $x, y \in X$ we have

$$\mathcal{M}(x, x, y, t) \ge \mathcal{M}(x, y, z, t)$$

for every $z \in X$.

Also it is called of second type if for every $x, y, z \in X$ we have

$$\mathcal{M}(x,y,z,t) = M(x,y,t) * M(y,z,t) * M(z,x,t).$$

Let $a * b = \min(a, b)$ for every $a, b \in [0, 1]$ in this case it is easy to see that, if \mathcal{M} is second type then \mathcal{M} is first type.

Example 1.14. If we define $\mathcal{M}(x,y,z,t) = \frac{t}{t+D(x,y,z)}$ where D(x,y,z) = d(x,y) + d(y,z) + d(x,z), or define

$$\mathcal{M}(x,y,z,t) = \left\{ \begin{array}{ll} 1 & \text{if } x=y=z, \\ \frac{t}{t+\max\{x,y,z\}} & \text{otherwise} \ , \end{array} \right.$$

then \mathcal{M} is first type.

If (X, M, *) is a fuzzy metric and $M(x, y, t) = \frac{t}{t + d(x, y)}$, then

$$\mathcal{M}(x,y,z,t) = \frac{t}{t+d(x,y)} * \frac{t}{t+d(y,z)} * \frac{t}{t+d(x,z)}$$

is second type.

Remark 1.15. Let $(X, \mathcal{M}, *)$ be a \mathcal{M} -fuzzy metric space. If \mathcal{M} is second type, sequence $\{x_n\}$ in X converges to x if and only if $\mathcal{M}(x, x, x_n, t) \longrightarrow 1$ or if and only if $M(x, x_n, t) \longrightarrow 1$. For

$$\mathcal{M}(x, x, x_n, t) = M(x, x, t) * M(x, x_n, t) * M(x, x_n, t)$$

= $M(x, x_n, t) * M(x, x_n, t)$.

2. The main results

Lemma 2.1. Let $(X, \mathcal{M}, *)$ be a \mathcal{M} -fuzzy metric space. Then $\mathcal{M}(x, y, z, t)$ is nondecreasing with respect to t, for all x, y, z in X.

Proof. By Definition 1.9(4) for each $x, y, z, a \in X$ and t, s > 0 we have

$$\mathcal{M}(x, y, a, t) * \mathcal{M}(a, z, z, s) \le \mathcal{M}(x, y, z, t + s).$$

If set a = z we get $\mathcal{M}(x, y, z, t) * \mathcal{M}(z, z, z, s) \leq \mathcal{M}(x, y, z, t + s)$, that is, $\mathcal{M}(x, y, z, t + s) \geq \mathcal{M}(x, y, z, t)$.

Definition 2.2. Let $(X, \mathcal{M}, *)$ be a \mathcal{M} -fuzzy metric space. \mathcal{M} is said to be continuous function on $X^3 \times (0, \infty)$ if

$$\lim_{n\to\infty} \mathcal{M}(x_n, y_n, z_n, t_n) = \mathcal{M}(x, y, z, t).$$

Whenever a sequence $\{(x_n, y_n, z_n, t_n)\}$ in $X^3 \times (0, \infty)$ converges to a point $(x, y, z, t) \in X^3 \times (0, \infty)$ i.e.,

$$\lim_{n\to\infty} x_n = x, \lim_{n\to\infty} y_n = y, \lim_{n\to\infty} z_n = z \text{ and } \lim_{n\to\infty} \mathcal{M}(x, y, z, t_n) = \mathcal{M}(x, y, z, t).$$

Lemma 2.3. Let $(X, \mathcal{M}, *)$ be a \mathcal{M} -fuzzy metric space. Then \mathcal{M} is continuous function on $X^3 \times (0, \infty)$.

Proof. Let $x,y,z\in X$ and t>0, and let $(x'_n,y'_n,z'_n,t'_n)_n$ be a sequence in $X^3\times (0,\infty)$ that converges to (x,y,z,t). Since $(\mathcal{M}(x'_n,y'_n,z'_n,t'_n))_n$ is a sequence in (0,1], there is a subsequence $(x_n,y_n,z_n,t_n)_n$ of sequence $(x'_n,y'_n,z'_n,t'_n)_n$ such that sequence $(\mathcal{M}(x_n,y_n,z_n,t_n))_n$ converges to some point of [0,1]. Fix $\delta>0$ such that $\delta<\frac{t}{2}$. Then, there is $n_0\in\mathbb{N}$ such that $|t-t_n|<\delta$ for every $n\geq n_0$. Hence,

$$\mathcal{M}(x_n, y_n, z_n, t_n)$$

$$\geq \mathcal{M}(x_n, y_n, z_n, t - \delta) \geq \mathcal{M}(x_n, y_n, z, t - \frac{4\delta}{3}) * \mathcal{M}(z, z_n, z_n, \frac{\delta}{3})$$

$$\geq \mathcal{M}(x_n, z, y, t - \frac{5\delta}{3}) * \mathcal{M}(y, y_n, y_n, \frac{\delta}{3}) * \mathcal{M}(z, z_n, z_n, \frac{\delta}{3})$$

$$\geq \mathcal{M}(z, y, x, t - 2\delta) * \mathcal{M}(x, x_n, x_n, \frac{\delta}{3}) * \mathcal{M}(y, y_n, y_n, \frac{\delta}{3}) * \mathcal{M}(z, z_n, z_n, \frac{\delta}{3})$$

and

$$\mathcal{M}(x,y,z,t+2\delta)$$

$$\geq \mathcal{M}(x,y,z,t_n+\delta) \geq \mathcal{M}(x,y,z_n,t_n+\frac{2\delta}{3}) * \mathcal{M}(z_n,z,z,\frac{\delta}{3})$$

$$\geq \mathcal{M}(x,z_n,y_n,t_n+\frac{\delta}{3}) * \mathcal{M}(y_n,y,y,\frac{\delta}{3}) * \mathcal{M}(z_n,z,z,\frac{\delta}{3})$$

$$\geq \mathcal{M}(z_n,y_n,x_n,t_n) * \mathcal{M}(x_n,x,x,\frac{\delta}{3}) * \mathcal{M}(y_n,y,y,\frac{\delta}{3}) * \mathcal{M}(z_n,z,z,\frac{\delta}{3})$$

for all $n > n_0$. By taking limits when $n \longrightarrow \infty$, we obtain

$$\lim_{n\to\infty} \mathcal{M}(x_n,y_n,z_n,t_n) \geq \mathcal{M}(x,y,z,t-2\delta) * 1 * 1 * 1 = \mathcal{M}(x,y,z,t-2\delta)$$

and

$$\mathcal{M}(x,y,z,t+2\delta) \ge \lim_{n \to \infty} \mathcal{M}(x_n,y_n,z_n,t_n) 1 * 1 * 1 = \lim_{n \to \infty} \mathcal{M}(x_n,y_n,z_n,t_n),$$

respectively. So, by continuity of the function $t \mapsto \mathcal{M}(x,y,z,t)$, we immediately deduce that

$$\lim_{n \to \infty} \mathcal{M}(x_n, y_n, z_n, t_n) = \mathcal{M}(x, y, z, t).$$

Therefore \mathcal{M} is continuous on $X^3 \times (0, \infty)$.

Henceforth, we assume that * is a continuous t-norm on [0,1] such that for every $\mu \in (0,1)$, there is a $\lambda \in (0,1)$ such that

$$\underbrace{(1-\lambda)*(1-\lambda)*\cdots*(1-\lambda)}^{n} \geq 1-\mu$$

Lemma 2.4. Let $(X, \mathcal{M}, *)$ be a \mathcal{M} -fuzzy metric space. If we define $E_{\lambda, \mathcal{M}}: X^3 \to \mathbb{R}^+ \cup \{0\}$ by

$$E_{\lambda,\mathcal{M}}(x,y,z) = \inf\{t > 0 : \mathcal{M}(x,y,z,t) > 1 - \lambda\}$$

for every $\lambda \in (0,1)$, then

(i) for each $\mu \in (0,1)$ there exists $\lambda \in (0,1)$ such that

$$E_{\mu \mathcal{M}}(x_1,x_1,x_n)$$

$$< E_{\lambda,\mathcal{M}}(x_1,x_1,x_2) + E_{\lambda,\mathcal{M}}(x_2,x_2,x_3) + \dots + E_{\lambda,\mathcal{M}}(x_{n-1},x_{n-1},x_n)$$

for any $x_1, x_2, ..., x_n \in X$,

(ii) The sequence $\{x_n\}_{n\in\mathbb{N}}$ is convergent in \mathcal{M} -fuzzy metric space $(X,\mathcal{M},*)$ if and only if $E_{\lambda,\mathcal{M}}(x_n,x_n,x)\to 0$. Also the sequence $\{x_n\}_{n\in\mathbb{N}}$ is Cauchy sequence if and only if it is Cauchy with $E_{\lambda,\mathcal{M}}$.

Proof. (i). For every $\mu \in (0,1)$, we can find a $\lambda \in (0,1)$ such that

$$\underbrace{(1-\lambda)*(1-\lambda)*\cdots*(1-\lambda)}^{n} \geq 1-\mu$$

by triangular inequality we have

$$\mathcal{M}(x_{1}, x_{1}, x_{n}, E_{\lambda, \mathcal{M}}(x_{1}, x_{1}, x_{2}) + E_{\lambda, \mathcal{M}}(x_{2}, x_{2}, x_{3}) + \cdots + E_{\lambda, \mathcal{M}}(x_{n-1}, x_{n-1}, x_{n}) + n\delta)$$

$$\geq \mathcal{M}(x_{1}, x_{1}, x_{2}, E_{\lambda, \mathcal{M}}(x_{1}, x_{1}, x_{2}) + \delta) * \cdots * \mathcal{M}(x_{n-1}, x_{n-1}, x_{n}, E_{\lambda, \mathcal{M}}(x_{n-1}, x_{n-1}, x_{n}) + \delta)$$

$$\geq \overbrace{(1 - \lambda) * (1 - \lambda) * \cdots * (1 - \lambda)}^{n} \geq 1 - \mu$$

for very $\delta > 0$, which implies that

$$E_{\mu,\mathcal{M}}(x_1, x_1, x_n)$$

 $\leq E_{\lambda,\mathcal{M}}(x_1, x_1, x_2) + E_{\lambda,\mathcal{M}}(x_2, x_2, x_3) + \dots + E_{\lambda,\mathcal{M}}(x_{n-1}, x_{n-1}, x_n) + n\delta.$

Since $\delta > 0$ is arbitrary, we have

$$E_{\mu,\mathcal{M}}(x_1, x_1, x_n)$$

$$\leq E_{\lambda,\mathcal{M}}(x_1, x_1, x_2) + E_{\lambda,\mathcal{M}}(x_2, x_2, x_3) + \dots + E_{\lambda,\mathcal{M}}(x_{n-1}, x_{n-1}, x_n).$$

(ii). Note that since \mathcal{M} is continuous in its third place and

$$E_{\lambda,\mathcal{M}}(x,x,y) = \inf\{t > 0 : \mathcal{M}(x,x,y,t) > 1 - \lambda\}.$$

Hence, we have

$$\mathcal{M}(x_n, x, x, \eta) > 1 - \lambda \iff E_{\lambda, \mathcal{M}}(x_n, x, x) < \eta$$

for every $\eta > 0$.

Lemma 2.5. Let $(X, \mathcal{M}, *)$ be a \mathcal{M} -fuzzy metric space. If

$$\mathcal{M}(x_n, x_n, x_{n+1}, t) > \mathcal{M}(x_0, x_0, x_1, k^n t)$$

for some k > 1 and for every $n \in \mathbb{N}$. Then sequence $\{x_n\}$ is a Cauchy sequence.

Proof. For every $\lambda \in (0,1)$ and $x_n, x_{n+1} \in X$, we have

$$\begin{split} E_{\lambda,\mathcal{M}}(x_n,x_n,x_{n+1}) &= \inf\{t>0 \ : \ \mathcal{M}(x_n,x_n,x_{n+1},t)>1-\lambda\} \\ &\leq \inf\{t>0 \ : \ \mathcal{M}(x_0,x_0,x_1,k^nt)>1-\lambda\} \\ &= \inf\{\frac{t}{k^n}>0 \ : \ \mathcal{M}(x_0,x_0,x_1,t)>1-\lambda\} \\ &= \frac{1}{k^n}\inf\{t>0 \ : \ \mathcal{M}(x_0,x_0,x_1,t)>1-\lambda\} \\ &= \frac{1}{k^n}E_{\lambda,\mathcal{M}}(x_0,x_0,x_1). \end{split}$$

By Lemma 2.4, for every $\mu \in (0,1)$ there exists $\lambda \in (0,1)$ such that

$$\begin{split} &E_{\mu,\mathcal{M}}(x_{n},x_{n},x_{m})\\ &\leq E_{\lambda,\mathcal{M}}(x_{n},x_{n},x_{n+1}) + E_{\lambda,\mathcal{M}}(x_{n+1},x_{n+1},x_{n+2}) + \dots + E_{\lambda,\mathcal{M}}(x_{m-1},x_{m-1},x_{m})\\ &\leq \frac{1}{k^{n}}E_{\lambda,\mathcal{M}}(x_{0},x_{0},x_{1}) + \frac{1}{k^{n+1}}E_{\lambda,\mathcal{M}}(x_{0},x_{0},x_{1}) + \dots + \frac{1}{k^{m-1}}E_{\lambda,\mathcal{M}}(x_{0},x_{0},x_{1})\\ &= E_{\lambda,\mathcal{M}}(x_{0},x_{0},x_{1}) \sum_{i=n}^{m-1} \frac{1}{k^{i}} \longrightarrow 0. \end{split}$$

Hence sequence $\{x_n\}$ is Cauchy sequence.

A class of implicit relation

Let Φ denotes a family of mappings such that each $\phi \in \Phi$, $\phi : [0,1] \longrightarrow [0,1]$, such that ϕ is continuous and $\phi(s) > s$ for every $s \in [0,1)$.

Theorem 2.6. Let $(X, \mathcal{M}, *)$ and $(Y, \mathcal{N}, \diamond)$ be two complete \mathcal{M} and \mathcal{N} -fuzzy metric spaces, respectively where \mathcal{M} and \mathcal{N} are first or second type. If A, B, C be three mappings of X to Y and T, S, R be three mappings of Y to X such that satisfies the following conditions:

- (i) $\mathcal{M}(SAx, TBx', RCx'', t) \geq \phi(\mathcal{M}(x, x', x'', k_1t))$, for every $x, x', x'' \in X$ some $k_1 > 1$ and $\phi \in \Phi$,
- (ii) $\mathcal{N}(CTy, ARy', BSy'', t) \geq \psi(\mathcal{N}(y, y', y'', k_2t)), \text{ for every } y, y', y'' \in Y \text{ some } k_2 > 1 \text{ and } \psi \in \Phi.$

If at least A, B, C, T, S or R be continuous mapping, then there exist a unique point $z \in X$ and $w \in Y$, such that SAz = TBz = RCz = z and ARw = BSw = CTw = w. Moreover,

$$Sw = Tw = Rw = z$$
 $Az = Bz = Cz = w.$

Proof. Let $x_0 \in X$ be an arbitrary point in X, define

$$Ax_0 = y_1$$
, $Sy_1 = x_1$, $Bx_1 = y_2$, $Ty_2 = x_2$, $Cx_2 = y_3$, and $Ry_3 = x_3$.

So by induction, for n = 0, 1, 2, ... we have

$$Ax_{3n} = y_{3n+1}, Sy_{3n+1} = x_{3n+1}, Bx_{3n+1} = y_{3n+2},$$

$$Ty_{3n+2} = x_{3n+2}, Cx_{3n+2} = y_{3n+3}, Ry_{3n+3} = x_{3n+3}.$$

Now, we prove that $\{x_n\}$ and $\{y_n\}$ are a Cauchy sequence in X and Y respectively. Let

$$d_n(t) = \mathcal{M}(x_n, x_{n+1}, x_{n+2}, t).$$

Now, for 3n, we get

$$d_{3n}(t)$$

$$= \mathcal{M}(x_{3n}, x_{3n+1}, x_{3n+2}, t)$$

$$= \mathcal{M}(Ry_{3n}, Sy_{3n+1}, Ty_{3n+2}, t)$$

$$= \mathcal{M}(RCx_{3n-1}, SAx_{3n}, TBx_{3n+1}, t)$$

$$= \mathcal{M}(SAx_{3n}, TBx_{3n+1}, RC_{3n-1}, t)$$

$$\geq \phi(\mathcal{M}(x_{3n}, x_{3n+1}, x_{3n-1}, k_1t)$$

$$\geq \mathcal{M}(x_{3n-1}, x_{3n}, x_{3n+1}, k_1t)$$

$$= d_{3n-1}(k_1t).$$

For 3n + 1, we have

$$d_{3n+1}(t) = \mathcal{M}(x_{3n+1}, x_{3n+2}, x_{3n+3}, t) = \mathcal{M}(Sy_{3n+1}, Ty_{3n+2}, Ry_{3n+3}, t)$$

$$= \mathcal{M}(SAx_{3n}, TBx_{3n+1}, RCx_{3n+2}, t)$$

$$\geq \phi(\mathcal{M}(x_{3n}, x_{3n+1}, x_{3n+2}, k_1t))$$

$$= \mathcal{M}(x_{3n}, x_{3n+1}, x_{3n+2}, k_1t) = d_{3n}(k_1t).$$

Also, for 3n + 2, we get

$$\begin{array}{lll} d_{3n+2}(t) & = & \mathcal{M}(x_{3n+2}, x_{3n+3}, x_{3n+4}, t) \\ & = & \mathcal{M}(Ty_{3n+2}, Ry_{3n+3}, Sy_{3n+4}, t) \\ & = & \mathcal{M}(TBx_{3n+1}, RCx_{3n+2}, SAx_{3n+3}, t) \\ & \geq & \phi(\mathcal{M}(x_{3n+1}, x_{3n+2}, x_{3n+3}, k_1 t)) \\ & = & \mathcal{M}(x_{3n+1}, x_{3n+2}, x_{3n+3}, k_1 t) = d_{3n+1}(k_1 t). \end{array}$$

Hence for every $n \in \mathbb{N}$ we have $d_n(t) > d_{n-1}(k_1 t)$. That is,

$$d_n(t) = \mathcal{M}(x_n, x_{n+1}, x_{n+1}, t)$$

$$\geq \mathcal{M}(x_{n-1}, x_n, x_{n+1}, k_1 t) \geq \dots \geq \mathcal{M}(x_0, x_1, x_2, k_1^n t).$$

Since \mathcal{M} is a first or second type, hence by Remark 1.15 $\{x_n\}$ is Cauchy and the completeness of X, $\{x_n\}$ converges to z in X. That is, $\lim_{n\to\infty} x_n = z$. Let

$$L_n(t) = \mathcal{N}(y_n, y_{n+1}, y_{n+2}, t).$$

Now, for 3n, we get

$$L_{3n}(t) = \mathcal{N}(y_{3n}, y_{3n+1}, y_{3n+2}, t) = \mathcal{N}(Cx_{3n-1}, Ax_{3n}, Bx_{3n+1}, t)$$

$$= \mathcal{N}(CTy_{3n-1}, ARy_{3n}, BSy_{3n+1}, t) = \mathcal{N}(SAx_{3n}, TBx_{3n+1}, RC_{3n-1}, t)$$

$$\geq \psi(\mathcal{N}(y_{3n-1}, y_{3n}, y_{3n+1}, k_2t))$$

$$\geq \mathcal{N}(y_{3n-1}, y_{3n}, y_{3n+1}, k_2t) = L_{3n-1}(k_2t).$$

For 3n + 1, we have

$$L_{3n+1}(t) = \mathcal{N}(y_{3n+1}, y_{3n+2}, y_{3n+3}, t) = \mathcal{N}(Ax_{3n}, Bx_{3n+1}, Cx_{3n+2}, t)$$

$$= \mathcal{N}(ARy_{3n}, BSy_{3n+1}, CTy_{3n+2}, t)$$

$$\geq \psi(\mathcal{N}(y_{3n}, y_{3n+1}, y_{3n+2}, k_2t))$$

$$= \mathcal{N}(y_{3n}, y_{3n+1}, y_{3n+2}, k_2t) = L_{3n}(k_2t).$$

Also, for 3n + 2, we get

$$L_{3n+2}(t) = \mathcal{N}(y_{3n+2}, y_{3n+3}, y_{3n+4}, t)$$

$$= \mathcal{N}(Bx_{3n+2}, Cx_{3n+3}, Ax_{3n+4}, t)$$

$$= \mathcal{N}(BSy_{3n+1}, CTy_{3n+2}, ARy_{3n+3}, t)$$

$$\geq \psi(\mathcal{N}(y_{3n+1}, y_{3n+2}, y_{3n+3}, k_2t))$$

$$= \mathcal{N}(y_{3n+1}, y_{3n+2}, y_{3n+3}, k_2t) = L_{3n+1}(k_2t).$$

Hence for every $n \in \mathbb{N}$ we have $L_n(t) \geq L_{n-1}(k_2t)$. That is,

$$L_n(t) = \mathcal{N}(y_n, y_{n+1}, y_{n+1}, t)$$

$$\geq \mathcal{N}(y_{n-1}, y_n, y_{n+1}, k_2 t) \geq \dots \geq \mathcal{M}(y_0, y_1, y_2, k_2^n t).$$

Since \mathcal{N} is a first or second type, hence by Remark 1.15 $\{y_n\}$ is Cauchy and the completeness of Y, $\{y_n\}$ converges to w in Y. That is, $\lim_{n\to\infty} y_n = w$.

Let A is continuous, hence $\lim_{n\to\infty} y_{n+1} = \lim_{n\to\infty} Ax_{3n} = A \lim_{n\to\infty} x_{3n} = Az = w$. Now, we prove that SAz = z. For by (i), we have

$$\mathcal{M}(SAz, TBx_{3n+1}, RCx_{3n+2}, t) \geq \phi(\mathcal{M}(z, x_{3n+1}, x_{3n+2}, k_1t))$$

On making $n \longrightarrow \infty$ we get

$$\mathcal{M}(SAz, z, z, t) > \phi(\mathcal{M}(z, z, z, k_1 t)) = \phi(1) = 1.$$

Thus Sw = SAz = z. Now, we prove that Bz = w for

$$\mathcal{N}(CTy_{3n-1}, ARy_{3n}, BSw, t) \geq \psi(\mathcal{N}(y_{3n-1}, y_{3n}, w, k_2t)).$$

Thus

$$\mathcal{N}(y_{3n}, y_{3n+1}, BSw, t) \ge \psi(\mathcal{N}(y_{3n-1}, y_{3n}, w, k_2t)).$$

As $n \longrightarrow \infty$ we have

$$\mathcal{N}(w, w, BSw, t) \geq \psi(\mathcal{N}(w, w, w, k_2 t)) = \psi(1) = 1.$$

Therefore, BSw = Bz = w. Again, replacing y by y_{3n-1} , y' by w and y" by w in (i), we have

$$\mathcal{N}(CTy_{3n-1}, ARw, BSw, t) = \mathcal{N}(y_{3n}, ARw, BSw, t) \ge \psi(\mathcal{N}(y_{3n-1}, w, w, k_2t)).$$

On making $n \longrightarrow \infty$ we get

$$\mathcal{N}(w, ARw, w, t) \geq \psi(\mathcal{N}(w, w, w, k_2 t)) = \psi(1) = 1.$$

Thus ARw = w. So

$$\mathcal{N}(CTw, ARw, BSw, t) > \psi(\mathcal{N}(w, w, w, k_2t)) = 1.$$

Therefore, CTw = ARw = BSw = w. Again, replacing x by z, x' by z and x'' by x_{3n+1} in (i), we have

$$\mathcal{M}(RCz, SAz, TBx_{3n+1}, t) > \phi(\mathcal{M}(z, z, x_{3n+1}, k_1 t)).$$

On making $n \longrightarrow \infty$ we get

$$\mathcal{M}(RCz, z, z, t) \ge \phi(\mathcal{M}(z, z, z, k_1 t)) = 1.$$

Therefore, RCz = z. Now, we prove that TBz = z for

$$\mathcal{M}(RCz, SAz, TBz, t) > \phi(\mathcal{M}(z, z, z, k_1 t)) = 1.$$

That is, TBz = Tw = z. Hence

$$TBz = RCz = SAz = z$$
.

Now, we have Cz = CTw = w. So Rw = RCz = z. Hence

$$TAz = RCz = SAz = z$$
 and $CTw = ARw = BSw = w$.

Therefore

$$Az = Bz = Cz = w$$
 and $Sw = Tw = Rw = z$.

Uniqueness, let z' be another common fixed point of A, B, C. If $\mathcal{M}(z, z, z', t) < 1$, then

$$\mathcal{M}(z, z, z', t) = \mathcal{M}(TAz, RCz, SAz', t)) \ge \phi(\mathcal{M}(z, z, z', k_1 t))$$

$$> \mathcal{M}(z, z, z', k_1 t)$$

is a contradiction. Therefore, z=z' is the unique common fixed point of selfmaps A, B, C. Similarly we prove that w is unique. Let w' be another common fixed point of R, S, T. If $\mathcal{N}(w, w, w', t) < 1$, then

$$\mathcal{N}(w, w, w', t) = \mathcal{N}(CTw, ARw, BSw', t)) \ge \psi(\mathcal{N}(w, w, w', k_2 t))$$
$$> \mathcal{N}(w, w, w', k_2 t)$$

is a contradiction. Therefore, w=w' is the unique common fixed point of self-maps T,R,S.

Example 2.7. Let X = [0, 1], Y = [1, 2]. If $S, T, R : [1, 2] \longmapsto [0, 1]$ defined

$$Ty = \left\{ \begin{array}{ll} 1 & \text{if } y \text{ is rational,} \\ 0 & \text{if } y \text{ is irrational.} \end{array} \right. Ry = \left\{ \begin{array}{ll} 1 & \text{if } y \text{ is rational,} \\ \frac{1}{2} & \text{if } y \text{ is irrational.} \end{array} \right.$$

$$Sy = \begin{cases} 1 & \text{if } y \text{ is rational,} \\ \frac{1}{3} & \text{if } y \text{ is irrational.} \end{cases}$$

Moreover, if $A, B, C : [0, 1] \longrightarrow [1, 2]$, defined Ax = 2 and

$$Bx = \left\{ \begin{array}{ll} 2 & \text{if } x \text{ is rational,} \\ 1 & \text{if } x \text{ is irrational.} \end{array} \right. Cx = \left\{ \begin{array}{ll} 2 & \text{if } x \text{ is rational,} \\ \frac{3}{2} & \text{if } x \text{ is irrational.} \end{array} \right.$$

Let $\mathcal{M}, \mathcal{N}, \phi$ and ψ be choice, such that A, B, C and T, R, S satisfying in the above theorem. Then it is easy to see that, A1 = B1 = C1 = 2 and T2 = S2 = R2 = 1. Hence

$$BS2 = AR2 = CT2 = 2$$
 and $TB1 = SA1 = RC1 = 1$.

Corollary 2.8. Let $(X, \mathcal{M}, *)$ and $(Y, \mathcal{N}, \diamond)$ be two complete \mathcal{M} and \mathcal{N} -fuzzy metric spaces, respectively where \mathcal{M} and \mathcal{N} are first or second type. If f be a mapping of X to Y and g be a mapping of Y to X such that satisfies the following conditions:

- (i) $\mathcal{M}(gfx, gfx', gfx'', t) \geq \phi(\mathcal{M}(x, x', x'', k_1t))$, for every $x, x', x'' \in X$ some $k_1 > 1$ and $\phi \in \Phi$.
- (ii) $\mathcal{N}(fgy, fgy', fgy'', t) \ge \psi(\mathcal{N}(y, y', y'', k_2t))$, for every $y, y', y'' \in Y$ some $k_2 > 1$ and $\psi \in \Phi$.

If at least f or g be continuous mapping, then there exist a unique point $z \in X$ and $w \in Y$, such that gfz = z and fgw = w. Moreover,

$$qw = z$$
 $fz = w$

Proof. It is enough set A=B=C=f and R=S=T=g in Theorem 2.6.

References

- [1] B. C. Dhage, Generalised metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc. 84 (1992), no. 4, 329–336.
- [2] M. S. El Naschie, On the uncertainty of Cantorian geometry and two-slit experiment, Chaos, Solitons and Fractals 9 (1998), 517–529.
- [3] ______, A review of E-infinity theory and the mass spectrum of high energy particle physics, Chaos, Solitons and Fractals 19 (2004), 209-236.
- [4] _____, On a fuzzy Kahler-like Manifold which is consistent with two-slit experiment, Int. J. of Nonlinear Science and Numerical Simulation 6 (2005), 95-98.
- [5] _____, The idealized quantum two-slit gedanken experiment revisited-criticism and reinterpretation, Chaos, Solitons and Fractals 27 (2006), 9-13.
- [6] A. George and P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets Syst 64 (1994), 395-399.
- [7] J. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 19 (1967), 145-174.
- [8] V. Gregori and A. Sapena, On fixed-point theorem in fuzzy metric spaces, Fuzzy Sets and Sys 125 (2002), 245-252.
- [9] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326-334.
- [10] B. E. Rhoades, A fixed point theorem for generalized metric spaces, Int. J. Math. Math. Sci. 19 (1996), no.1, 145–153.
- [11] J. Rodríguez López and S. Ramaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets Sys. 147 (2004), 273-283.
- [12] D. Mihet, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets Sys. 144 (2004), 431-439.
- [13] R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals 27 (2006), 331–344.
- [14] B. Singh and R. K. Sharma, Common fixed points via compatible maps in D-metric spaces, Rad. Mat. 11 (2002), no. 1, 145-153.

- [15] B. Schweizer, H. Sherwood, and R. M. Tardiff, Contractions on PM-space examples and counterexamples, Stochastica 1 (1988), 5-17.
- [16] G. Song, Comments on "A common fixed point theorem in a fuzzy metric spaces", Fuzzy Sets Sys 135 (2003), 409-413.
- [17] Y. Tanaka, Y. Mizno, and T. Kado, Chaotic dynamics in Friedmann equation, Chaos, Solitons and Fractals 24 (2005), 407–422.
- [18] R. Vasuki, Common fixed points for R-weakly commuting maps in fuzzy metric spaces, Indian J Pure Appl Math. 30 (1999), 419-423.
- [19] R. Vasuki and P. Veeramani, Fixed point theorems and Cauchy sequences in fuzzy metric spaces, Fuzzy Sets Sys. 135 (2003), 409-413.
- [20] L. A. Zadeh, Fuzzy sets, Inform and Control 8 (1965), 338-353.

SHABAN SEDGHI
DEPARTMENT OF MATHEMATICS
ISLAMIC AZAD UNIVERSITY-GHAEMSHAHR BRANCH
GHAEMSHAHR P.O.BOX 163 IRAN
E-mail address: sedghi_gh@yahoo.com

NABI SHOBE
DEPARTMENT OF MATHEMATICS
ISLAMIC AZAD UNIVERSITY-BABOL BRANCH
GHAEMSHAHR P. O. BOX 163 IRAN
E-mail address: nabi_shobe@yahoo.com