A METHOD TO MAKE BCK-ALGEBRAS

YOUNG BAE JUN, KYOUNG JA LEE, AND CHUL HWAN PARK

ABSTRACT. Using the notion of posets, a method to make BCK-algebras is considered. We show that if a poset has the least element, then the induced BCK-algebra is bounded.

1. Introduction and basic results on BCK-algebras

BCK-algebras entered into mathematics in 1966 through the work of Imai and Iséki [3], and have been applied to many branches of mathematics, such as group theory, functional analysis, probability theory and topology. Such algebras generalize Boolean rings as well as Boolean D-posets (= MV-algebras). Founding new BCK-algebras is important in studying BCK-algebras and related algebraic structures. A way to make a new BCK-algebra from old is established by Abujabal [1]. Jun et al. [7] gave a method to make a BCK-algebra from a poset and an upper set. Hao [2] gave a method for constructing a proper BCC-algebra by the extension of a BCK-algebra with a small atom. Iséki [6] gave a method to make a BCI-algebra by using a group and a BCK-algebra. In this paper, we give a method to make a BCK-algebra by using a poset. We show that if a poset has the least element, then the induced BCK-algebra is bounded.

We first display basic concepts on BCK-algebras. By a BCK-algebra we mean an algebra (X; *, 0) of type (2, 0) satisfying the axioms:

- (a1) $(\forall x, y, z \in X)$ (((x * y) * (x * z)) * (z * y) = 0),
- (a2) $(\forall x, y \in X) ((x * (x * y)) * y = 0),$
- (a3) $(\forall x \in X) (x * x = 0, 0 * x = 0),$
- (a4) $(\forall x, y \in X) (x * y = 0, y * x = 0 \Rightarrow x = y).$

We can define a partial ordering \leq by $x \leq y$ if and only if x * y = 0. A BCK-algebra X is said to be bounded if there exists the bound 1 such that $x \leq 1$ for all $x \in X$. A mapping $f: X \to Y$ of BCK-algebras is called a homomorphism if f(x * y) = f(x) * f(y) for all $x, y \in X$.

Received July 9, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 06A06, 03G25.

Key words and phrases. (irreducible) ideal, order system, decreasing subset.

In any BCK-algebra X, the following hold:

- (b1) $(\forall x \in X) (x * 0 = x),$
- (b2) $(\forall x, y, z \in X) ((x * y) * z = (x * z) * y),$
- (b3) $(\forall x, y, z \in X) ((x*z)*(y*z) \le x*y),$
- (b4) $(\forall x, y, z \in X)$ $(x \le y \Rightarrow x * z \le y * z, z * y \le z * x).$

2. Making BCK-algebras

In what follows let X denote a BCK-algebra unless otherwise specified. The following definition is well-known.

Definition 2.1. A subset A of X is called an *ideal* of X if it satisfies:

- (c1) $0 \in A$.
- (c2) $(\forall x \in A) \ (\forall y \in X) \ (y * x \in A \Rightarrow y \in A).$

Note that every ideal A of X satisfies:

$$(2.1) \qquad (\forall x \in A) (\forall y \in X) (y \le x \Rightarrow y \in A).$$

The set of all ideals of X is denoted by Id(X). It is known that Id(X) is an infinitely distributive lattice (see [10]). If A is a nonempty subset of X, then the ideal of X generated by A, in symbol $\langle A \rangle$, is the set (see [4, Theorem 3])

(2.2)
$$\langle A \rangle = \left\{ x \in X \middle| \begin{array}{c} (\cdots ((x * a_0) * a_1) * \cdots) * a_n = 0 \\ \text{for some } a_0, a_1, \dots, a_n \in A \end{array} \right\}.$$

Definition 2.2. An ideal A of X is said to be *irreducible* (see [5]) if it satisfies:

$$(2.3) \qquad (\forall B, C \in Id(X)) (A = B \cap C \Rightarrow A = B \text{ or } A = C).$$

Denote by IId(X) the set of all irreducible ideals of X.

Lemma 2.3 ([5, Theorem 2]). Let $A \in Id(X)$. If A is irreducible, then

$$(2.4) \qquad (\forall a, b \in X \setminus A) \ (\exists c \in X \setminus A) \ (c \le a, \ c \le b).$$

Lemma 2.4. Let $A \in Id(X)$. Then the following are equivalent:

- (i) A is irreducible.
- (ii) $(\forall a, b \in X \setminus A)$ $(\exists c \in X \setminus A)$ $(c * a, c * b \in A)$.

Proof. (i) \Rightarrow (ii) This follows from Lemma 2.3.

(ii) \Rightarrow (i) Let $B, C \in Id(X)$ be such that $A = B \cap C$. Assume that $A \neq B$ and $A \neq C$. Then there exist $b \in B \setminus A$ and $c \in C \setminus A$. It follows from (ii) that there exists $d \in X \setminus A$ such that $d * b \in A$ and $d * c \in A$. From $b \in B \setminus A \subseteq B$ and $d * b \in A = B \cap C \subseteq B$, we have $d \in B$ since $B \in Id(X)$. Similarly, $d \in C$, and so $d \in B \cap C = A$. This is a contradiction. Therefore A is an irreducible ideal of X.

Definition 2.5. A subset I of X is called an *order system* of X if it satisfies:

(c3) I is an upper set, that is, I satisfies:

$$(\forall x \in X) (\forall y \in I) (y \le x \Rightarrow x \in I),$$

(c4)
$$(\forall x, y \in I) (\exists z \in I) (z \le x, z \le y).$$

Denote by Os(X) the set of all order systems of X.

Theorem 2.6. Let $A \in Id(X)$ and $I \in Os(X)$. If A and I are disjoint, then there exists an irreducible ideal B of X such that $A \subseteq B$ and $B \cap I = \emptyset$.

Proof. Let

$$\mathscr{X} := \{ H \in Id(X) \mid A \subseteq H, H \cap I = \emptyset \}.$$

Then $\mathscr{X} \neq \emptyset$ since $A \in \mathscr{X}$. Obviously, the union of a chain of elements of \mathscr{X} is contained in \mathscr{X} . Using Zorn's lemma, \mathscr{X} has a maximal element, say B. Let $a,b \in X \setminus B$ and consider ideals $\langle B \cup \{a\} \rangle$ and $\langle B \cup \{b\} \rangle$ generated by $B \cup \{a\}$ and $B \cup \{b\}$, respectively. Clearly $B \subseteq \langle B \cup \{a\} \rangle \cap \langle B \cup \{b\} \rangle$, and so $\langle B \cup \{a\} \rangle \cap I \neq \emptyset$ and $\langle B \cup \{b\} \rangle \cap I \neq \emptyset$. If not, then $\langle B \cup \{a\} \rangle \in \mathscr{X}$ or $\langle B \cup \{b\} \rangle \in \mathscr{X}$. This contradicts to the fact that B is a maximal element of \mathscr{X} . Hence there exist $x, y \in I$ such that $x \in \langle B \cup \{a\} \rangle$ and $y \in \langle B \cup \{b\} \rangle$. It follows that $x * a \in B$ and $y * b \in B$. Since I is an order system of X, there exists $z \in I$, and so $z \in X \setminus B$, such that $z \leq x$ and $z \leq y$. It follows from (b4) that $z * a \leq x * a$ and $z * b \leq y * b$ so from (2.1) that $z * a \in B$ and $z * b \in B$. We conclude from Lemma 2.4 that B is irreducible.

Let (P, \leq) be a poset. For any $a \in P$, we put

$$(2.6) (a] := \{x \in P \mid x \le a\}.$$

For any $X \subseteq P$, we put

$$(2.7) (X] := \bigcup_{a \in X} (a].$$

For any $X \subseteq P$, if X = (X] then we say that X is a decreasing subset of P. Denote by $\mathcal{D}(P)$ the family of all decreasing subsets of P.

Theorem 2.7. If (P, \leq) is a poset, then $(\mathcal{D}(P), \odot, P)$ is a BCK-algebra where the operation \odot is defined as follows:

$$(2.8) \qquad (\forall X, Y \in \mathcal{D}(P)) (X \odot Y = \{a \in P \mid (a] \cap Y \subseteq X\}).$$

Proof. The proof is routine.

Example 2.8. Let $P = \{1, 2, 3\}$ be a poset with the following Hasse diagram:

Then $(1] = \{1\}$, $(2] = \{2\}$ and $(3] = \{1,3\}$. It is routine to verify that $\mathscr{D}(P) = \{P, \{1,2\}, \{1,3\}, \{1\}, \{2\}\},$

and it is a BCK-algebra with the following Cayley table:

Example 2.9. Consider the letter N poset (see [9]):

$$P := \{a, b, c, d\} \text{ and } \leq := \{(a, a), (b, b), (c, c), (d, d), (a, c), (b, c), (b, d)\}.$$

The Hasse diagram for this poset is as follows:

Then $(a] = \{a\}, (b] = \{b\}, (c] = \{a, b, c\}$ and $(d] = \{b, d\}$. Decreasing subsets of P are $\{a\}, \{b\}, \{a, b\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}$ and P, that is,

$$\mathscr{D}(P) = \{P, \{a\}, \{b\}, \{a,b\}, \{b,d\}, \{a,b,c\}, \{a,b,d\}\}.$$

Using (2.8), we have the following Cayley table:

·	P	$\{a\}$	$\{b\}$	$\{a,b\}$	$\{b,d\}$	$\{a, \underline{b}, c\}$	$\{a,b,d\}$
\overline{P}	\overline{P}	\overline{P}	\overline{P}	\overline{P}	P	\overline{P}	P
$\{a\}$	$\{a\}$	P	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$	$\{a\}$
$\{b\}$	$\{b\}$	$\{b,d\}$	P	$\{b,d\}$	$\{a,b,c\}$	$\{b,d\}$	$\{b\}$
$\{a,b\}$	$\{a,b\}$	P	P	P	$\{a,b,c\}$	$\{a,b,d\}$	$\{a,b,c\}$
$\{b,d\}$	$\{b,d\}$	$\{b,d\}$	P	$\{b,d\}$	P	$\{b,d\}$	$\{b,d\}$
$\{a,b,c\}$	$\{a,b,c\}$	P	P	P	P	P	$\{a,b,c\}$
	$\{a,b,d\}$	P	P	P	P	$\{a,b,d\}$	P

Example 2.10. Let $P = \{0, 1, 2\}$ be a poset with the following Hasse diagram:

Then
$$(0] = \{0\}$$
, $(1] = \{0, 1\}$ and $(2] = \{0, 2\}$. We know that $\mathcal{D}(P) = \{P, \{0, 1\}, \{0, 2\}, \{0\}\},\$

and it is a bounded BCK-algebra with the following Cayley table:

Lemma 2.11. If (P, \leq) is a poset with the least element, then every decreasing subset of P contains the least element.

Proof. Let X be a decreasing subset of P and let a be the least element of (P, <). Then $a \in (x]$ for all $x \in P$, and so

(2.9)
$$a \in \bigcup_{w \in X} (w] = (X] = X.$$

This completes the proof.

Theorem 2.12. If (P, \leq) is a poset with the least element a, then the induced BCK-algebra $(\mathcal{D}(P), \odot, P)$ is bounded with the bound (a].

Proof. Since a is the least element of (P, \leq) , we have $(a] = \{a\}$ and $a \in (w]$ for all $w \in P$. Hence $(w] \cap (a] = \{a\}$ for all $w \in P$. Now if $X \in \mathcal{D}(P)$, then $a \in X$ by Lemma 2.11. Therefore

$$X \odot (a) = \{ y \in P \mid (y] \cap (a) = \{a\} \subseteq X \} = P,$$

that is, (a] is the bound of the induced BCK-algebra $(\mathcal{D}(P), \odot, P)$.

Let \leq be an order relation on IId(X) defined by

$$(2.10) \qquad (\forall A, B \in IId(X)) (A \le B \Leftrightarrow B \subseteq A).$$

Then $(IId(X), \leq)$ is a poset, and $(\mathcal{D}(IId(X)), \odot, IId(X))$ is a BCK-algebra. Let $f: X \to \mathcal{D}(IId(X))$ be a mapping defined by

$$(2.11) \qquad (\forall x \in X) (f(x) = \{A \in IId(X) \mid x \in A\}).$$

Lemma 2.13. Let $A \in IId(X)$ be such that $x * y \in A$ for every $x, y \in A$. If $B \in IId(X)$ satisfies $B \in (A] \cap f(y)$, then $B \in f(x)$.

Proof. Let $B \in IId(X)$ be such that $B \in (A] \cap f(y)$. Then $B \in (A]$ and $B \in f(y)$, and so $B \leq A$, i.e., $A \subseteq B$ and $y \in B$. Since $x * y \in A \subseteq B$, it follows from (c2) that $x \in B$ so that $B \in f(x)$.

Theorem 2.14. The mapping $f: X \to \mathcal{D}(IId(X))$ which is established in (2.11) is a homomorphism.

Proof. Let $A \in f(x * y)$ for all $x, y \in X$. Then $A \in IId(X)$ and $x * y \in A$. Thus if $B \in IId(X)$ and $B \in (A] \cap f(y)$, then $B \in f(x)$ by Lemma 2.13, and so $A \in f(x) \odot f(y)$. Conversely, assume that $A \in IId(X)$ and $A \cap f(y) \subseteq f(x)$ for all $x, y \in X$. If $x * y \notin A$, then consider an ideal $A_y := \langle A \cup \{y\} \rangle$. Since

 $x \notin A_y$, there exists $B \in IId(X)$ such that $A \subseteq B$, $y \in B$ and $x \notin B$. Hence $A \notin f(x) \odot f(y)$, which is a contradiction. Therefore $x * y \in A$ and $A \in f(x * y)$. Consequently, f is a homomorphism.

Theorem 2.15. Let $f: X \to \mathcal{D}(IId(X))$ be the mapping which is established in (2.11). Then

$$(2.12) f(X) := \{ f(x) \mid x \in X \}$$

is a subalgebra of $\mathcal{D}(IId(X))$, which is isomorphic to X.

Proof. Clearly, f(X) is a subalgebra of $\mathcal{D}(IId(X))$. It is also clear that the mapping $f: X \to \mathcal{D}(IId(X))$ is injective. Since f is a homomorphism, it follows that X and f(X) are isomorphic.

References

- [1] H. A. S. Abujabal, A relative one-point union of BCK-algebras, Math. Japonica 45 (1997), no. 1, 103-111.
- [2] J. Hao, Ideal theory of BCC-algebras, Scientiae Mathematicae 1 (1998), no. 3, 373-381.
- [3] Y. Imai and K. Iséki, On axiom systems of propositional calculi, Proc. Jpn. Acad. 42 (1966), 19-21.
- [4] K. Iséki, On ideals in BCK-algebras, Math. Seminar Notes 3 (1975), 1–12.
- [5] _____, On some ideals in BCK-algebras, Math. Seminar Notes 3 (1975), 65-70.
- [6] _____, Some examples of BCI-algebras, Math. Seminar Notes 8 (1980), 237-240.
- [7] Y. B. Jun, J. Y. Kim, and H. S. Kim, On Q-upper algebras, Order 22 (2005), 191-200.
- [8] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co. Korea, 1994.
- [9] J. Neggers and H. S. Kim, Basic Posets, World Scientific Publishing Co. 1998.
- [10] M. Palasiński, On ideals and congruence lattices of BCK-algebras, Math. Seminar Notes 9 (1981), 441–443.

Young Bae Jun

DEPARTMENT OF MATHEMATICS EDUCATION (AND RINS)

GYEONGSANG NATIONAL UNIVERSITY

CHINJU 660-701, KOREA

E-mail address: skywine@gmail.com

KYOUNG JA LEE

SCHOOL OF GENERAL EDUCATION

KOOKMIN UNIVERSITY

SEOUL 136-702, KOREA

E-mail address: lsj1109@kookmin.ac.kr

CHUL HWAN PARK

DEPARTMENT OF MATHEMATICS

University of Ulsan

ULSAN 680-749, KOREA

E-mail address: skyrosemary@gmail.com