SOME ESTIMATES OF LITTLEWOOD-PALEY TYPE OPERATORS IN ARITHMETIC

YONG-CHEOL KIM

ABSTRACT. We prove that certain square functions of Littlewood-Paley type satisfy certain mapping properties on $L^q(\mathbb{Q}^d_n)$.

1. Introduction

For a prime number p, let \mathbb{Q}_p denote the p-adic field. From the standard *p*-adic analysis [8], we see that any non-zero element $x \in \mathbb{Q}_p$ is uniquely represented in the canonical form $x = p^{\gamma} \sum_{j=0}^{\infty} x_j p^j$, $\gamma = \gamma(x) \in \mathbb{Z}$, where $x_i \in \{0, 1, \dots, p-1\}$ and $x_0 \neq 0$. Here we call $\gamma = \gamma(x)$ the p-adic valuation of x and we write $\gamma = \operatorname{ord}_p(x)$ with convention $\operatorname{ord}_p(0) = \infty$. Then it is wellknown [1, 8] that the nonnegative function $|\cdot|_p$ on \mathbb{Q}_p given by $|x|_p = p^{-\operatorname{ord}_p(x)}$ becomes a non-Archimedean norm on \mathbb{Q}_p and \mathbb{Q}_p is defined as the completion of \mathbb{Q} with respect to the norm $|\cdot|_p$. For $d \in \mathbb{N}$, let \mathbb{Q}_p^d denotes the vector space over \mathbb{Q}_p which consists of all points $\mathbf{x} = (x_1, x_2, \dots, x_d), x_1, x_2, \dots, x_d \in \mathbb{Q}_p$. If we define $|\mathbf{x}|_p = \max_{1 \le j \le d} |x_j|_p$ for $\mathbf{x} \in \mathbb{Q}_p^d$, then it is easy to see that $|\cdot|_p$ is a non-Archimedean norm on \mathbb{Q}_p^d and moreover \mathbb{Q}_p^d is a locally compact Hausdorff and totally disconnected Banach space with respect to the norm $|\cdot|_p$. For $\gamma \in \mathbb{Z}$, we denote the ball $B_{\gamma}(\mathbf{a})$ with center $\mathbf{a} \in \mathbb{Q}_p^d$ and radius p^{γ} and its boundary $S_{\gamma}(\mathbf{a})$ by $B_{\gamma}(\mathbf{a}) = \{\mathbf{x} \in \mathbb{Q}_p^d : |\mathbf{x} - \mathbf{a}|_p \le p^{\gamma}\} \text{ and } S_{\gamma}(\mathbf{a}) = \{\mathbf{x} \in \mathbb{Q}_p^d : |\mathbf{x} - \mathbf{a}|_p = p^{\gamma}\},$ respectively. Since \mathbb{Q}_p^d is a locally compact commutative group under addition, it follows from the standard analysis that there exists a unique Haar measure $d_H \mathbf{x}$ on \mathbb{Q}_p^d (up to positive constant multiple) which is translation invariant (i.e., $d_H(\mathbf{x} + \mathbf{a}) = d_H \mathbf{x}$) and is normalized by

(1.1)
$$\int_{B_0(\mathbf{0})} d_H \mathbf{x} = |B_0(\mathbf{0})|_H = 1,$$

where $|E|_H$ denotes the Haar measure of a measurable subset E of \mathbb{Q}_p^d . From this integration theory, it is easy to obtain $|B_{\gamma}(\mathbf{a})|_H = p^{\gamma d}$ and $|S_{\gamma}(\mathbf{a})|_H = p^{\gamma d}(1-p^{-d})$ for any $\mathbf{a} \in \mathbb{Q}_p^d$.

Received April 2, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 11S80, 11K70, 11E95.

Key words and phrases. Lilltlewood-Paley operators, p-adic vector space, Haar measure.

In what follows, we say that a (real-valued) measurable function f defined on \mathbb{Q}_p^d is in $L^q(\mathbb{Q}_p^d)$, $1 \leq q \leq \infty$, if it satisfies

(1.2)
$$||f||_{L^q(\mathbb{Q}_p^d)} \coloneqq \left(\int_{\mathbb{Q}_p^d} |f(\mathbf{x})|^q d_H \mathbf{x} \right)^{1/q} < \infty, \ 1 \le q < \infty,$$

$$||f||_{L^{\infty}(\mathbb{Q}_p^d)} \coloneqq \inf \{ \alpha : |\{ \mathbf{x} \in \mathbb{Q}_p^d : |f(\mathbf{x})| > \alpha \}|_H = 0 \} \} < \infty.$$

Here the integral in (1.2) is defined as

(1.3)
$$\int_{\mathbb{Q}_p^d} |f(\mathbf{x})|^q d_H \mathbf{x} = \lim_{N \to \infty} \int_{B_N(\mathbf{0})} |f(\mathbf{x})|^q d_H \mathbf{x}$$
$$= \lim_{N \to \infty} \sum_{-\infty < \gamma < N} \int_{S_{\gamma}(\mathbf{0})} |f(\mathbf{x})|^q d_H \mathbf{x},$$

if the limit exists. We now mention some of the previous works on harmonic analysis on the p-adic field \mathbb{Q}_p as follows; Haran [2, 3] obtained the explicit formula of Riesz potentials on \mathbb{Q}_p and developed an analytical potential theory on the p-adic field \mathbb{Q}_p .

Let $f(\mathbf{x})$ be a complex-valued function on \mathbb{Q}_p^d . Then we say that f is locally-constant if for any $\mathbf{x} \in \mathbb{Q}_p^d$ there exists some integer $\ell(\mathbf{x}) \in \mathbb{Z}$ such that $f(\mathbf{x} + \mathbf{x}') = f(\mathbf{x})$ for $|\mathbf{x}'|_p \leq p^{\ell(\mathbf{x})}$. We denote by $\mathcal{E}(\mathbb{Q}_p^d)$ the class of all locally-constant functions on \mathbb{Q}_p^d and we denote by $\mathcal{D}(\mathbb{Q}_p^d)$ the subclass of all functions in $\mathcal{E}(\mathbb{Q}_p^d)$ with compact support. We call a function in $\mathcal{D}(\mathbb{Q}_p^d)$ a test function on \mathbb{Q}_p^d . Any nonzero p-adic number $\eta \in \mathbb{Q}_p$ with $|\eta|_p = p^{-\gamma}$ may be written in the unique form $\eta = \sum_{j=\gamma}^{\infty} \eta_j p^j$, where $\eta_j \in \{0, 1, \dots, p-1\}$ and $\eta_\gamma \neq 0$, as above. We define a function χ_p on \mathbb{Q}_p by

(1.4)
$$\chi_p(\eta) = \begin{cases} \prod_{j=\gamma}^{-1} \exp(2\pi i \eta_j p^j), & \gamma < 0, \\ 1, & \gamma \ge 0 \text{ or } \eta = 0. \end{cases}$$

Then it turns out (see [8]) that the function $\mathbf{x} \to \chi_p(\langle \boldsymbol{\xi}, \mathbf{x} \rangle)$ for each $\boldsymbol{\xi} \in \mathbb{Q}_p^d$ is an additive character of \mathbb{Q}_p^d and the group $B_{\gamma}(\mathbf{0})$, where $\langle \boldsymbol{\xi}, \mathbf{x} \rangle$ is the inner product of $\boldsymbol{\xi}, \mathbf{x} \in \mathbb{Q}_p^d$. For $g \in \mathcal{D}(\mathbb{Q}_p^d)$, we define the Fourier transformation of g by $\mathfrak{F}[g](\boldsymbol{\xi}) = \widetilde{g}(\boldsymbol{\xi}) = \int_{\mathbb{Q}_p^d} \chi_p(\langle \boldsymbol{\xi}, \mathbf{x} \rangle) g(\mathbf{x}) \, d_H \mathbf{x}$ for $\boldsymbol{\xi} \in \mathbb{Q}_p^d$. Then $\mathfrak{F}: \mathcal{D}(\mathbb{Q}_p^d) \to \mathcal{D}(\mathbb{Q}_p^d)$ is a unitary isomorphism with the inversion formula $g(\mathbf{x}) = \int_{\mathbb{Q}_p^d} \chi_p(-\langle \mathbf{x}, \boldsymbol{\xi} \rangle) \widetilde{g}(\boldsymbol{\xi}) \, d_H \boldsymbol{\xi}$ and with the Parseval-Steklov equalities

$$\int_{\mathbb{Q}_p^d} g(\mathbf{x}) \overline{h(\mathbf{x})} d_H \mathbf{x} = \int_{\mathbb{Q}_p^d} \widetilde{g}(\boldsymbol{\xi}) \overline{\widetilde{h}(\boldsymbol{\xi})} d_H \boldsymbol{\xi}, \int_{\mathbb{Q}_p^d} g(\mathbf{x}) \widetilde{h}(\mathbf{x}) d_H \mathbf{x}
= \int_{\mathbb{Q}_p^d} \widetilde{g}(\boldsymbol{\xi}) h(\boldsymbol{\xi}) d_H \boldsymbol{\xi}, g, h \in \mathcal{D}(\mathbb{Q}_p^d).$$

Moreover, $\mathfrak F$ is a unitary isomorphism from $L^2(\mathbb Q_p^d)$ to $L^2(\mathbb Q_p^d)$ with the inversion formula

$$g(\mathbf{x}) = \lim_{\gamma \to \infty} \int_{B_{\sigma}(\mathbf{0})} \chi_p(-\langle \mathbf{x}, \boldsymbol{\xi} \rangle) \widetilde{g}(\boldsymbol{\xi}) \, d_H \boldsymbol{\xi} \text{ in } L^2(\mathbb{Q}_p^d) \;, \; g \in \mathcal{D}(\mathbb{Q}_p^d),$$

and with the Parseval-Steklov equalities on $L^2(\mathbb{Q}_p^d)$, because $\mathcal{D}(\mathbb{Q}_p^d)$ is dense in $L^2(\mathbb{Q}_p^d)$ (see [8]).

Let $\mathcal{M}(\mathbb{Q}_p^d)$ denote the set of all measurable functions on \mathbb{Q}_p^d . For $f, g \in \mathcal{M}(\mathbb{Q}_p^d)$, we define the convolution f * g of f and g by

$$f * g(\mathbf{x}) = \int_{\mathbb{Q}_a^d} f(\mathbf{x} - \mathbf{y}) g(\mathbf{y}) d_H \mathbf{y}, \ \mathbf{x} \in \mathbb{Q}_p^d.$$

For a function $\varphi \in \mathcal{M}(\mathbb{Q}_p^d)$, we define a square function $\mathcal{S}_{\varphi}(f)$ of Littlewood-Paley type by

$$\mathcal{S}_{\varphi}(f)(\mathbf{x}) = \left(\int_{\mathbb{Q}_p} |\varphi_t * f(\mathbf{x})|^2 \frac{d_H t}{|t|_p}\right)^{1/2}, \, \mathbf{x} \in \mathbb{Q}_p^d,$$

where $\varphi_t(\mathbf{x}) = |t|_p^{-d} \varphi(\mathbf{x}/t)$ for $t \in \mathbb{Q}_p$. For $\varphi, \psi^1, \psi^2, \dots, \psi^n \in \mathcal{M}(\mathbb{Q}_p^d)$ and $n \in \mathbb{N}$, we define another square function $\mathcal{S}_{\varphi, \{\psi^i\}}^n(f)$ by

$$\mathcal{S}^n_{arphi,\{\psi^i\}}(f)(\mathbf{x}) = \left(\int_{\mathbb{Q}_p} |(arphi_t * f)^2 * \psi_t^1 * \psi_t^2 * \cdots * \psi_t^n(\mathbf{x})| \, rac{d_H t}{|t|_p}
ight)^{1/2}, \, \mathbf{x} \in \mathbb{Q}_p^d,$$

where $\psi_t^i(\mathbf{x}) = |t|_p^{-d} \psi^i(\mathbf{x}/t)$ for $t \in \mathbb{Q}_p$ and i = 1, 2, ..., n. Our purpose of this article is to obtain $L^q(\mathbb{Q}_p^d)$ -mapping properties of those square functions $\mathcal{S}_{\varphi}(f)$ and $\mathcal{S}_{\varphi,\{\psi^i\}}^n(f)$ under certain conditions on $\varphi, \psi^1, \psi^2, ..., \psi^n \in \mathcal{M}(\mathbb{Q}_p^d)$ to be given later.

In what follows, we shall use notations; given two quantities A and B, we write $A \leq B$ or $B \gtrsim A$ if there is a positive constant c (possibly depending on the dimension d and a prime number p to be given) such that $A \leq cB$. We also write $A \sim B$ if $A \lesssim B$ and $B \lesssim A$. We denote by $\mathbb{Q}_p^* = \mathbb{Q}_p \setminus \{0\}$, and by \mathcal{C}_F the characteristic function of a measurable subset F of \mathbb{Q}_p^d .

Theorem 1.1. Let $\varphi \in \mathcal{M}(\mathbb{Q}_p^d)$ be a real-valued function satisfying that

(1.5)
$$\sup_{\boldsymbol{\xi} \in S_0(\mathbf{0})} \int_{\mathbb{Q}_p} |\widetilde{\varphi}(t\boldsymbol{\xi})|^2 \, \frac{d_H t}{|t|_p} \le A,$$

$$(1.6) \quad \sup_{\mathbf{y} \in \mathbb{O}_{+}^{d}} \int_{\{\mathbf{x} \in \mathbb{O}_{+}^{d}: |\mathbf{x}|_{p} \geq |\mathbf{y}|_{p}\}} \left(\int_{\mathbb{O}_{p}} |\varphi_{t}(\mathbf{x} - \mathbf{y}) - \varphi_{t}(\mathbf{x})|^{2} \frac{d_{H}t}{|t|_{p}} \right)^{1/2} d_{H}\mathbf{x} \leq B.$$

Then S_{φ} is a bounded operator from $L^{q}(\mathbb{Q}_{p}^{d})$ into $L^{q}(\mathbb{Q}_{p}^{d})$ for $1 < q < \infty$ and it is of weak type (1,1) on $L^{1}(\mathbb{Q}_{p}^{d})$. Moreover, if $\mathcal{J}(\boldsymbol{\xi}) = \int_{\mathbb{Q}_{p}} |\widetilde{\varphi}(t\boldsymbol{\xi})|^{2} \frac{d_{H}t}{|t|_{p}} > 0$ is constant a.e. on $S_{0}(\mathbf{0})$, then we have $||f||_{L^{q}(\mathbb{Q}_{p}^{d})} \lesssim ||S_{\varphi}(f)||_{L^{q}(\mathbb{Q}_{p}^{d})} \lesssim ||f||_{L^{q}(\mathbb{Q}_{p}^{d})}$.

We observe that if $\varphi(\mathbf{x}) = \varphi(|\mathbf{x}|_p)$ for $\mathbf{x} \in \mathbb{Q}_p^d$ then the assumption (1.6) can be omitted because $|\cdot|_p$ is a non-Archimedean norm on \mathbb{Q}_p^d . Thus we have the following corollary.

Corollary 1.2. Let $\varphi \in \mathcal{M}(\mathbb{Q}_p^d)$ be a real-valued function satisfying (1.5) and $\varphi(\mathbf{x}) = \varphi(|\mathbf{x}|_p)$ for $\mathbf{x} \in \mathbb{Q}_p^d$. Then S_{φ} is a bounded operator from $L^q(\mathbb{Q}_p^d)$ into $L^q(\mathbb{Q}_p^d)$ for $1 < q < \infty$ and it is of weak type (1,1) on $L^1(\mathbb{Q}_p^d)$. Moreover, if $\mathcal{J}(\boldsymbol{\xi}) = \int_{\mathbb{Q}_p} |\widetilde{\varphi}(t\boldsymbol{\xi})|^2 \frac{d_H t}{|t|_p} > 0$ is constant a.e. on $S_0(\mathbf{0})$, then we have $||f||_{L^q(\mathbb{Q}_p^d)} \lesssim ||S_{\varphi}(f)||_{L^q(\mathbb{Q}_p^d)} \lesssim ||f||_{L^q(\mathbb{Q}_p^d)}$.

Theorem 1.3. Let $\varphi \in \mathcal{M}(\mathbb{Q}_p^d)$ be a real-valued function satisfying (1.5) and (1.6) as in Theorem 1.1, and let $\psi^1, \psi^2, \ldots, \psi^n \in \mathcal{M}(\mathbb{Q}_p^d)$ be real-valued functions satisfying

(1.7)
$$\int_{\mathbb{Q}_n^d} \psi_*^i(\mathbf{x}) \, d_H \mathbf{x} = \alpha_i < \infty,$$

where $\psi^i_*(\mathbf{x}) = \sup_{\{\mathbf{y} \in \mathbb{Q}_p^d: |\mathbf{y}|_p \geq |\mathbf{x}|_p\}} |\psi^i(\mathbf{y})|$ for i = 1, 2, ..., n. Then, for each $n \in \mathbb{N}$, $\mathcal{S}^n_{\varphi, \{\psi^i\}}$ is a bounded operator from $L^q(\mathbb{Q}_p^d)$ into $L^q(\mathbb{Q}_p^d)$ for $2 \leq q < \infty$.

Remark. We could not obtain $L^q(\mathbb{Q}_p^d)$ -mapping properties of $\mathcal{S}_{\varphi,\{\psi^i\}}^n$ for $1 \leq q < 2$. It would be interesting to ask whether the unsettled problem is true or not.

Corollary 1.4. Let $\varphi \in \mathcal{M}(\mathbb{Q}_p^d)$ be a real-valued function satisfying (1.5) and $\varphi(\mathbf{x}) = \varphi(|\mathbf{x}|_p)$ for $\mathbf{x} \in \mathbb{Q}_p^d$, and let $\psi^1, \psi^2, \dots, \psi^n \in \mathcal{M}(\mathbb{Q}_p^d)$ be real-valued functions satisfying (1.7). Then $\mathcal{S}_{\varphi,\{\psi^i\}}$ is a bounded operator from $L^q(\mathbb{Q}_p^d)$ into $L^q(\mathbb{Q}_p^d)$ for $2 \leq q < \infty$.

Corollary 1.5. Let $\varphi \in \mathcal{M}(\mathbb{Q}_p^d)$ be a real-valued function satisfying (1.5) and (1.6), and let $\{\psi^i\}_{i\in\mathbb{N}} \subset \mathcal{M}(\mathbb{Q}_p^d)$ be a family of real-valued functions satisfying (1.7). If $\sum_{n=1}^{\infty} \prod_{k=1}^{n} \alpha_k < \infty$, then $\sum_{n=1}^{\infty} \mathcal{S}_{\varphi,\{\psi^i\}}^n$ is a bounded operator from $L^q(\mathbb{Q}_p^d)$ into $L^q(\mathbb{Q}_p^d)$ for $2 \leq q < \infty$.

2. Preliminary estimates and examples

In this section, we obtain several propositions which shall be useful in furnishing examples to exemplify the main theorems.

Proposition 2.1. If m is a function on \mathbb{R}_+ satisfying $\sum_{\gamma=0}^{\infty} |\mathfrak{m}(p^{-\gamma})| p^{-\gamma d} < \infty$, then we have that for any $\mathbf{x} \in \mathbb{Q}_p^d \setminus \{\mathbf{0}\}$,

$$\int_{\mathbb{Q}_p^d} \chi_p(-\langle \mathbf{x}, \boldsymbol{\xi} \rangle) \mathfrak{m}(|\boldsymbol{\xi}|_p) \, d_H \boldsymbol{\xi} = \frac{1 - p^{-d}}{|\mathbf{x}|_p^d} \sum_{\gamma = 0}^{\infty} p^{-\gamma d} \mathfrak{m}(p^{-\gamma} |\mathbf{x}|_p^{-1}) - \frac{1}{|\mathbf{x}|_p^d} \mathfrak{m}(p |\mathbf{x}|_p^{-1}).$$

Proof. It follows from (1.4) that $\int_{B_{\gamma}(\mathbf{0})} \chi_p(-\langle \mathbf{x}, \boldsymbol{\xi} \rangle) d_H \boldsymbol{\xi} = p^{\gamma d} C_{B_{-\gamma}(\mathbf{0})}(\mathbf{x})$ for any $\gamma \in \mathbb{Z}$. Thus for $\gamma \in \mathbb{Z}$ we have that

(2.1)
$$\int_{S_{\gamma}(\mathbf{0})} \chi_{p}(-\langle \mathbf{x}, \boldsymbol{\xi} \rangle) d_{H} \boldsymbol{\xi}$$

$$= p^{\gamma d} \mathcal{C}_{B_{-\gamma}(\mathbf{0})}(\mathbf{x}) - p^{(\gamma-1)d} \mathcal{C}_{B_{-\gamma+1}(\mathbf{0})}(\mathbf{x})$$

$$= p^{\gamma d} (1 - p^{-d}) \mathcal{C}_{B_{-\gamma}(\mathbf{0})}(\mathbf{x}) - p^{(\gamma-1)d} \mathcal{C}_{S_{-\gamma+1}(\mathbf{0})}(\mathbf{x}).$$

Hence by (2.1) and simple calculation we obtain that

$$\begin{split} \int_{\mathbb{Q}_p^d} \chi_p(-\langle \mathbf{x}, \boldsymbol{\xi} \rangle) \mathfrak{m}(|\boldsymbol{\xi}|_p) \, d_H \boldsymbol{\xi} &= \lim_{N \to \infty} \sum_{\gamma = -\infty}^N \mathfrak{m}(p^\gamma) \int_{S_\gamma(\mathbf{0})} \chi_p(-\langle \boldsymbol{\xi}, \mathbf{x} \rangle) \, d_H \mathbf{x} \\ &= \frac{1 - p^{-d}}{|\mathbf{x}|_p^d} \sum_{\gamma = 0}^\infty p^{-\gamma d} \mathfrak{m}(p^{-\gamma} |\mathbf{x}|_p^{-1}) - \frac{1}{|\mathbf{x}|_p^d} \mathfrak{m}(p |\mathbf{x}|_p^{-1}). \end{split}$$

Proposition 2.2. If \mathfrak{m} is a function on \mathbb{R}_+ satisfying $\sum_{\gamma=0}^{\infty} |\mathfrak{m}(p^{-\gamma})| p^{-\gamma d} < \infty$ and $\varphi(\mathbf{x}) = \mathfrak{F}^{-1}[\mathfrak{m}(|\boldsymbol{\xi}|_p)](\mathbf{x})$, then

$$\sup_{\mathbf{y}\in\mathbb{Q}_p^*} \int_{\{\mathbf{x}\in\mathbb{Q}_p^d: |\mathbf{x}|_p \geq |\mathbf{y}|_p\}} \left(\int_{\mathbb{Q}_p} |\varphi_t(\mathbf{x}-\mathbf{y}) - \varphi_t(\mathbf{x})|^2 \frac{d_H t}{|t|_p} \right)^{1/2} d_H \mathbf{x} = 0.$$

Proof. Since $|\cdot|_p$ is a non-Archimedean norm on \mathbb{Q}_p^d , it easily follows from Proposition 2.1.

Example. (a) We consider the kernel φ_a defined by $\widetilde{\varphi}_a(\boldsymbol{\xi}) = |\boldsymbol{\xi}|_p (1 - |\boldsymbol{\xi}|_p)_+^n$, $\boldsymbol{\xi} \in \mathbb{Q}_p^d$, $n \in \mathbb{N}$. By Proposition 2.2, the kernel φ_a satisfies (1.6) of Theorem 1.1. Thus it suffices to show that

$$\mathcal{J}(\boldsymbol{\xi}) = \int_{\mathbb{Q}_n} |\widetilde{\varphi}_a(t\boldsymbol{\xi})|^2 \, \frac{d_H t}{|t|_p} > 0$$

is constant on $S_0(\mathbf{0})$. Indeed, by the binomial theorem and simple calculation, we get that

$$\begin{split} & \int_{\mathbb{Q}_p} |\widetilde{\varphi}_a(t\xi)|^2 \, \frac{d_H t}{|t|_p} \\ &= \int_{|t|_p \le |\xi|_p^{-1}} |t|_p \, |\xi|_p^2 (1 - |t|_p \, |\xi|_p)^{2n} \, d_H t \\ &= \left(1 - \frac{1}{p}\right) \sum_{s=0}^{2n} (-1)^s \binom{2n}{s} \frac{1}{1 - p^{-(2+s)}} \\ &\le p^2 \left(1 - \frac{1}{p}\right) \sum_{s=0}^{2n} (-1)^s \binom{2n}{s} p^s = p(p-1)^{2n+1} < \infty. \end{split}$$

_

Thus it follows from Theorem 1.1 that \mathcal{S}_{φ_a} is of weak type (1,1) on $L^1(\mathbb{Q}_p^d)$ and

$$||f||_{L^q(\mathbb{Q}_p^d)} \lesssim ||\mathcal{S}_{\varphi_a}(f)||_{L^q(\mathbb{Q}_p^d)} \lesssim ||f||_{L^q(\mathbb{Q}_p^d)} \text{ for } 1 < q < \infty.$$

(b) Let φ_b be the kernel satisfying $\widetilde{\varphi}_b(\boldsymbol{\xi}) = \exp(-|\boldsymbol{\xi}|_p)|\boldsymbol{\xi}|_p^n$, $\boldsymbol{\xi} \in \mathbb{Q}_p^d$, $n \in \mathbb{N}$. Since it is easy to see that $\sum_{\gamma=0}^{\infty} |\widetilde{\varphi}_b(p^{-\gamma})| p^{-\gamma d} < \infty$, the kernel φ_b satisfies (1.6) of Theorem 1.1. Thus it is enough to show that

$$\sup_{\boldsymbol{\xi} \in S_{\gamma}(\mathbf{0})} \int_{\mathbb{Q}_p} |\widetilde{\varphi}_b(t\boldsymbol{\xi})|^2 \, \frac{d_H t}{|t|_p} \le A.$$

In order to show it, we observe that $\exp(x) \geq x^k/k!$, $x \in \mathbb{R}$, for all $k \in \mathbb{N}$. From simple calculation, we obtain that for $\boldsymbol{\xi} \in S_0(\mathbf{0})$

$$\int_{\mathbb{Q}_p} |\widetilde{\varphi}_b(t\boldsymbol{\xi})|^2 \frac{d_H t}{|t|_p}$$

$$= |\boldsymbol{\xi}|_p^n \lim_{N \to \infty} \sum_{\gamma = -\infty}^N \exp(-|t|_p |\boldsymbol{\xi}|_p) |t|_p^{n-1} \int_{S_{\gamma}(\mathbf{0})} d_H t$$

$$= \left(1 - \frac{1}{p}\right) \left(\sum_{\gamma = 0}^\infty \exp(-p^{-\gamma}) p^{-\gamma n} + \sum_{\gamma = 1}^\infty \exp(-p^{\gamma}) p^{\gamma n}\right)$$

$$\leq (n-1)! + \frac{(n+1)!}{p} < \infty.$$

Thus by Theorem 1.1 we conclude that \mathcal{S}_{φ_b} is of weak type (1,1) on $L^1(\mathbb{Q}_p^d)$ and

$$||f||_{L^q(\mathbb{Q}_n^d)} \lesssim ||\mathcal{S}_{\varphi_b}(f)||_{L^q(\mathbb{Q}_n^d)} \lesssim ||f||_{L^q(\mathbb{Q}_n^d)} \text{ for } 1 < q < \infty.$$

(c) We consider the kernel φ_c given by $\widetilde{\varphi}_c(\boldsymbol{\xi}) = |\boldsymbol{\xi}|_p (1 - |\boldsymbol{\xi}|_p)_+^c$, $\boldsymbol{\xi} \in \mathbb{Q}_p^d$, c > 0. From Proposition 2.2, we see that the kernel φ_c satisfies (1.6) of Theorem 1.1. Thus it suffices to show that

$$\mathcal{J}(\boldsymbol{\xi}) = \int_{\mathbb{Q}_p} |\widetilde{\varphi}_c(t\boldsymbol{\xi})|^2 \, \frac{d_H t}{|t|_p} > 0$$

is constant on $S_0(\mathbf{0})$. Indeed, by simple calculation, we obtain that for $\boldsymbol{\xi} \in S_0(\mathbf{0})$

$$\begin{split} \int_{\mathbb{Q}_p} |\widetilde{\varphi}_c(t\pmb{\xi})|^2 \, \frac{d_H t}{|t|_p} &= \int_{|t|_p \le |\pmb{\xi}|_p^{-1}} |t|_p \, |\pmb{\xi}|_p^2 (1 - |t|_p \, |\pmb{\xi}|_p)^{2c} \, d_H t \\ &= |\pmb{\xi}|_p^2 \sum_{\gamma = -\infty}^{\log_p (|\pmb{\xi}|_p^{-1})} p^{\gamma} (1 - p^{\gamma} |\pmb{\xi}|_p)^{2c} \int_{S_{\gamma}(\mathbf{0})} d_H t \le \frac{p}{p+1} < \infty. \end{split}$$

Thus it follows from Theorem 1.1 that if c > 0 then \mathcal{S}_{φ_c} is of weak type (1,1) on $L^1(\mathbb{Q}^d_p)$ and

$$||f||_{L^q(\mathbb{Q}_n^d)} \lesssim ||\mathcal{S}_{\varphi_c}(f)||_{L^q(\mathbb{Q}_n^d)} \lesssim ||f||_{L^q(\mathbb{Q}_n^d)} \text{ for } 1 < q < \infty.$$

3. The proof of Theorem 1.1

We consider the Hilbert space $\mathcal{H} = L^2(\mathbb{Q}_p, d_H t/|t|_p)$ with the inner product given by $\langle g_t(\mathbf{x}), h_t(\mathbf{x}) \rangle_{\mathcal{H}} = \int_{\mathbb{Q}_p} g_t(\mathbf{x}) h_t(\mathbf{x}) \frac{d_H t}{|t|_p}, \ g = (g_t)_{t \in \mathbb{Q}_p}, h = (h_t)_{t \in \mathbb{Q}_p} \in \mathcal{H}.$ Then by applying Fubini's theorem we have the associative relation of convolution as follows; if $f \in \mathcal{M}(\mathbb{Q}_p^d)$ and $g = (g_t)_{t \in \mathbb{Q}_p} \in \mathcal{H}$, then

(3.1)
$$\int_{\mathbb{Q}_p^d} \langle \varphi_t * f(\mathbf{x}), g_t(\mathbf{x}) \rangle_{\mathcal{H}} d_H \mathbf{x} = \int_{\mathbb{Q}_p^d} \left(\int_{\mathbb{Q}_p} \bar{\varphi}_t * g_t(\mathbf{y}) \frac{d_H t}{|t|_p} \right) f(\mathbf{y}) d_H \mathbf{y},$$

where $\bar{\varphi}(\mathbf{x}) = \varphi(-\mathbf{x})$. We write $|g(\mathbf{x})|_{\mathcal{H}} = \sqrt{\langle g_t(\mathbf{x}), g_t(\mathbf{x}) \rangle_{\mathcal{H}}}$ for $g = (g_t)_{t \in \mathbb{Q}_p} \in$

We take any $f \in L^1(\mathbb{Q}_p^d) \cap L^2(\mathbb{Q}_p^d)$ and $g = (g_t)_{t \in \mathbb{Q}_p} \in L^1(\mathbb{Q}_p^d; \mathcal{H}) \cap L^2(\mathbb{Q}_p^d; \mathcal{H})$. We may assume that $\mathcal{J}(\boldsymbol{\xi}) = \beta > 0$ a.e. on $S_0(\mathbf{0})$, because the first part can similarly be obtained from the second part. By the Parseval-Steklov equalities on $L^2(\mathbb{Q}_n^d)$ and (1.5), we easily obtain that

$$\begin{split} \|\varphi_{t} * f\|_{L^{2}(\mathbb{Q}_{p}^{d};\mathcal{H})}^{2} &= \|\mathcal{S}_{\varphi}(f)\|_{L^{2}(\mathbb{Q}_{p}^{d})}^{2} = \int_{\mathbb{Q}_{p}^{d}} \left(\int_{\mathbb{Q}_{p}} |\widetilde{\varphi}(t\boldsymbol{\xi})|^{2} \frac{d_{H}t}{|t|_{p}} \right) |\widetilde{f}(\boldsymbol{\xi})|^{2} d_{H}\boldsymbol{\xi} \\ &= \int_{\mathbb{Q}_{p}^{d}} \left(\int_{\mathbb{Q}_{p}} |\widetilde{\varphi}(t|\boldsymbol{\xi}|_{p}\boldsymbol{\xi})|^{2} \frac{d_{H}t}{|t|_{p}} \right) |\widetilde{f}(\boldsymbol{\xi})|^{2} d_{H}\boldsymbol{\xi} = \beta \|f\|_{L^{2}(\mathbb{Q}_{p}^{d})}^{2}. \end{split}$$

Since $\langle \varphi_t * f(\mathbf{x}), g_t(\mathbf{x}) \rangle_{\mathcal{H}} \leq \mathcal{S}_{\varphi}(f)(\mathbf{x}) \cdot |g(\mathbf{x})|_{\mathcal{H}}$ by Schwarz's inequality, it follows from (3.1), (3.2), and the converse of Hölder's inequality that

(3.3)
$$\left\| \int_{\mathbb{Q}_p} \bar{\varphi}_t * g_t \frac{d_H t}{|t|_p} \right\|_{L^2(\mathbb{Q}_p^d)}^2 \le \beta \|g\|_{L^2(\mathbb{Q}_p^d;\mathcal{H})}^2.$$

We now prove that \mathcal{S}_{φ} is of weak type (1,1) on $L^1(\mathbb{Q}_p^d)$. For this, we employ the p-adic version [4] of the Calderón-Zygmund decomposition of f with aperture $\lambda > 0$ as follows;

$$f = \mathfrak{g} + \mathfrak{b} = \mathfrak{g} + \sum_{k=1}^{\infty} \mathfrak{b}_k,$$

where $\{B_k : k \in \mathbb{N}\}$ is a countable family of pairwise disjoint p-adic balls so that

- (a) $|\{\mathbf{x} \in \mathbb{Q}_p^d : |\mathfrak{g}(\mathbf{x})| > p^d \lambda\}|_H = 0,$ (b) $\mathfrak{b}_k(\mathbf{x}) = 0$ for any $\mathbf{x} \in \mathbb{Q}_p^d \setminus B_k$ and $\int_{\mathbb{Q}_p^d} \mathfrak{b}_k(\mathbf{x}) d_H \mathbf{x} = 0,$
- $\begin{array}{ll} (c) & \sum_{k=1}^{\infty} |B_k|_H \leq \frac{1}{\lambda} \, \|f\|_{L^1(\mathbb{Q}_p^d)}, \\ (d) & \|\mathfrak{g}\|_{L^1(\mathbb{Q}_p^d)} + \sum_{k=1}^{\infty} \|\mathfrak{b}_k\|_{L^1(\mathbb{Q}_p^d)} \leq 3 \, \|f\|_{L^1(\mathbb{Q}_p^d)}. \end{array}$

Then it follows from (3.2) and the p-adic version of Chebyshev's inequality that

$$(3.4) |\{\mathbf{x} \in \mathbb{Q}_p^d : |\mathcal{S}_{\varphi}(\mathfrak{g})(\mathbf{x}) > \lambda/2\}|_H \le \frac{1}{\lambda^2} ||\mathfrak{g}||_{L^2(\mathbb{Q}_p^d)}^2 \le \frac{p^d}{\lambda} ||f||_{L^1(\mathbb{Q}_p^d)}.$$

If we set $\Omega = \bigcup_{k \in \mathbb{N}} B_k$, then we have that

(3.5)
$$|\Omega|_{H} \leq \frac{1}{\lambda} ||f||_{L^{1}(\mathbb{Q}_{p}^{d})}.$$

It also follows from (1.6), the cancellation property of \mathfrak{b}_k , and the integral Minkowski's inequality that

$$\begin{split} &|\{\mathbf{x} \in \mathbb{Q}_p^d \setminus \Omega : \mathcal{S}_{\varphi}(\mathfrak{b})(\mathbf{x}) > \lambda/2\}|_H \\ &\leq \frac{2}{\lambda} \int_{\mathbb{Q}_p^d \setminus \Omega} \mathcal{S}_{\varphi}(\mathfrak{b})(\mathbf{x}) \, d_H \mathbf{x} \leq \frac{2}{\lambda} \sum_{k=1}^{\infty} \int_{\mathbb{Q}_p^d \setminus B_k} \mathcal{S}_{\varphi}(\mathfrak{b}_k)(\mathbf{x}) \, d_H \mathbf{x} \\ &\leq \frac{2}{\lambda} \sum_{k=1}^{\infty} \int_{\mathbf{y} \in B_k} \int_{\mathbf{x} \in \mathbb{Q}_p^d \setminus B_k} \left(\int_{\mathbb{Q}_p} |\varphi_t(\mathbf{x} - \mathbf{y}) - \varphi_t(\mathbf{x})|^2 \, \frac{d_H t}{|t|_p} \right)^{1/2} d_H \mathbf{x} \, |\mathfrak{b}_k(\mathbf{y})| \, d_H \mathbf{y} \\ &\leq \frac{2B}{\lambda} \sum_{k=1}^{\infty} ||\mathfrak{b}_k||_{L^1(\mathbb{Q}_p^d)} \leq \frac{2B}{\lambda} \, ||f||_{L^1(\mathbb{Q}_p^d)}. \end{split}$$

Combining this with (3.4) and (3.5), then we obtain that

$$(3.6) |\{\mathbf{x} \in \mathbb{Q}_p^d : \mathcal{S}_{\varphi}(f)(\mathbf{x}) > \lambda\}|_H \le \frac{p^d + 1 + 2B}{\lambda} ||f||_{L^1(\mathbb{Q}_p^d)}.$$

We employ the p-adic version [4] of the Calderón-Zygmund decomposition of $g = (g_t)_{t \in \mathbb{Q}_p} \in L^1(\mathbb{Q}_p^d; \mathcal{H})$ with aperture $\lambda > 0$ as follows;

$$g = h + b = h + \sum_{i=1}^{\infty} b^i = (h_t)_{t \in \mathbb{Q}_p} + \sum_{i=1}^{\infty} (b_t^i)_{t \in \mathbb{Q}_p},$$

where $\{B_i : i \in \mathbb{N}\}$ is a countable family of pairwise disjoint p-adic balls so that

- (a) $|\{\mathbf{x} \in \mathbb{Q}_p^d : |h(\mathbf{x})|_{\mathcal{H}} > p^d \lambda\}|_{H} = 0,$ (b) $b_t^i(\mathbf{x}) = 0$ on $\mathbb{Q}_p^d \setminus B_i$ and $\int_{\mathbb{Q}_p^d} b_t^i(\mathbf{x}) d_H \mathbf{x} = 0$ for any $t \in \mathbb{Q}_p$,
- (c) $\sum_{i=1}^{\infty} |B_i|_H \leq \frac{1}{\lambda} ||g||_{L^1(\mathbb{Q}_n^d;\mathcal{H})},$
- (d) $||h||_{L^1(\mathbb{Q}_p^d;\mathcal{H})} + \sum_{i=1}^{\infty} ||b^i||_{L^1(\mathbb{Q}_p^d;\mathcal{H})} \le 3 ||g||_{L^1(\mathbb{Q}_p^d;\mathcal{H})}$

Very similarly to (3.6), we also obtain that

$$(3.7) \qquad \left| \left\{ \mathbf{x} \in \mathbb{Q}_p^d : \left| \int_{\mathbb{Q}_p} \bar{\varphi}_t * g_t(\mathbf{x}) \, \frac{d_H t}{|t|_p} \right| > \lambda \right\} \right|_H \le \frac{p^d + 1 + 2B}{\lambda} \, ||g||_{L^1(\mathbb{Q}_p^d; \mathcal{H})}.$$

Applying the general p-adic version [5] of the Marcinkiewicz interpolation theorem with (3.2) and (3.6), and with (3.3) and (3.7), for $1 < q \le 2$ we have that

(3.9)
$$\left\| \int_{\mathbb{Q}_p} \bar{\varphi}_t * g_t \frac{d_H t}{|t|_p} \right\|_{L^q(\mathbb{Q}_p^d)} \lesssim \|g\|_{L^q(\mathbb{Q}_p^d;\mathcal{H})}.$$

Next we treat the case $q \geq 2$. Take any $f \in L^q(\mathbb{Q}_p^d)$. Then it follows from (3.1), (3.9), the converse of Hölder's inequality, and the *p*-adic version of Hölder's inequality that

$$\begin{aligned} \|\mathcal{S}_{\varphi}(f)\|_{L^{q}(\mathbb{Q}_{p}^{d})} &= \|\varphi_{t} * f\|_{L^{q}(\mathbb{Q}_{p}^{d};\mathcal{H})} \\ &= \sup_{\|g\|_{L^{q'}(\mathbb{Q}_{p}^{d};\mathcal{H})} \leq 1} \int_{\mathbb{Q}_{p}^{d}} \left(\int_{\mathbb{Q}_{p}} \bar{\varphi}_{t} * g_{t}(\mathbf{y}) \frac{d_{H}t}{|t|_{p}} \right) f(\mathbf{y}) d_{H}\mathbf{y} \\ &\leq \sup_{\|g\|_{L^{q'}(\mathbb{Q}_{p}^{d};\mathcal{H})} \leq 1} \left\| \int_{\mathbb{Q}_{p}} \bar{\varphi}_{t} * g_{t} \frac{d_{H}t}{|t|_{p}} \right\|_{L^{q'}(\mathbb{Q}_{p}^{d})} \|f\|_{L^{q}(\mathbb{Q}_{p}^{d})} \lesssim \|f\|_{L^{q}(\mathbb{Q}_{p}^{d})}, \end{aligned}$$

where q' is the dual exponent of q. From (3.1), (3.8), the converse of Hölder's inequality, and the p-adic version of Hölder's inequality that, we also obtain that

(3.11)
$$\left\| \int_{\mathbb{Q}_p} \bar{\varphi}_t * g_t \frac{d_H t}{|t|_p} \right\|_{L^q(\mathbb{Q}_p^d)} \lesssim \|g\|_{L^q(\mathbb{Q}_p^d;\mathcal{H})}.$$

Finally, the polarization of (3.2) implies that

(3.12)
$$|\{\mathbf{x} \in \mathbb{Q}_p^d : f(\mathbf{x}) \neq \beta \int_{\mathbb{Q}_p} \bar{\varphi}_t * (\varphi_t * f)(\mathbf{x}) \frac{d_H t}{|t|_p}\}|_H = 0.$$

Hence we complete the remaining part by applying (3.8), (3.9), (3.10), (3.11), and (3.12).

Corollary 3.1. Suppose that $\varphi \in \mathcal{M}(\mathbb{Q}_p^d)$ be a real-valued function satisfying (1.5) and (1.6). If $1 < q < \infty$, then we have

$$\left\| \int_{\mathbb{Q}_p} \bar{\varphi}_t * g_t \, \frac{d_H t}{|t|_p} \, \right\|_{L^q(\mathbb{Q}_p^d)} \lesssim \|g\|_{L^q(\mathbb{Q}_p^d;\mathcal{H})}.$$

Moreover, we have $\left|\left\{\mathbf{x}\in\mathbb{Q}_p^d:\left|\int_{\mathbb{Q}_p}\bar{\varphi}_t*g_t(\mathbf{x})\left|\frac{d_Ht}{|t|_p}\right|>\lambda\right\}\right|_H\leq \frac{1}{\lambda}\,\|g\|_{L^1(\mathbb{Q}_p^d;\mathcal{H})}.$

4. The proof of Theorem 1.3

For a function $f \in L^1_{loc}(\mathbb{Q}_p^d)$, we define the Hardy-Littlewood maximal function of f on \mathbb{Q}_p^d by

$$\mathcal{M}_p f(\mathbf{x}) = \sup_{\gamma \in \mathbb{Z}} \frac{1}{|B_{\gamma}(\mathbf{x})|_H} \int_{B_{\gamma}(\mathbf{x})} |f(\mathbf{y})| d_H \mathbf{y}.$$

Then we see [5] that \mathcal{M}_p is a bounded operator of $L^r(\mathbb{Q}_p^d)$ into $L^r(\mathbb{Q}_p^d)$ for $1 < r < \infty$ and is of weak type (1,1) on $L^1(\mathbb{Q}_p^d)$. Moreover, it is well known [5] that for $i = 1, 2, \ldots, n$,

(3.1)
$$\sup_{t \in \mathbb{Q}_p} |\bar{\psi}_t^i * g(\mathbf{x})| \le ||\psi_*^i||_{L^1(\mathbb{Q}_p^d)} \mathcal{M}_p g(\mathbf{x}).$$

Let $2 \le q < \infty$ be given and let $r \in (1, \infty)$ satisfy 1/r + 2/q = 1. We take any $g \in L^r(\mathbb{Q}_p^d)$. Then by Fubini's theorem and (3.1) we have that

$$\int_{\mathbb{Q}_p^d} [\mathcal{S}_{\varphi,\{\psi^i\}}^n(f)(\mathbf{x})]^2 g(\mathbf{x}) d_H \mathbf{x}$$

$$= \int_{\mathbb{Q}_p^d} \int_{\mathbb{Q}_p} [\varphi_t * f(\mathbf{x})]^2 [\bar{\psi}_t^1 * \bar{\psi}_t^2 \cdots * \bar{\psi}_t^n * g(\mathbf{x})] \frac{d_H t}{|t|_p} d_H \mathbf{x}$$

$$\leq \prod_{i=1}^n \|\psi_*^i\|_{L^1(\mathbb{Q}_p^d)} \int_{\mathbb{Q}_p^d} [\mathcal{S}(f)(\mathbf{x})]^2 \mathcal{M}_p^n g(\mathbf{x}) d_H \mathbf{x},$$

where \mathcal{M}_p^n denotes the *n*-times iterated composition of \mathcal{M}_p . Then it follows from the converse of Hölder's inequality, (3.2), the *p*-adic version of Hölder's inequality, and Theorem 1.1 that

$$\begin{split} \|\mathcal{S}^n_{\varphi,\{\psi^i\}}(f)\|^2_{L^q(\mathbb{Q}^d_p)} &= \sup_{\|g\|_{L^r(\mathbb{Q}^d_p)} \le 1} \int_{\mathbb{Q}^d_p} [\mathcal{S}^n_{\varphi,\{\psi^i\}}(f)(\mathbf{x})]^2 \, g(\mathbf{x}) \, d_H \mathbf{x} \\ &\lesssim \sup_{\|g\|_{L^r(\mathbb{Q}^d_p)} \le 1} \int_{\mathbb{Q}^d_p} [\mathcal{S}(f)(\mathbf{x})]^2 \, \mathcal{M}^n_p \, g(\mathbf{x}) \, d_H \mathbf{x} \\ &\leq \sup_{\|g\|_{L^r(\mathbb{Q}^d_p)} \le 1} \|\mathcal{S}_\varphi(f)\|^2_{L^q(\mathbb{Q}^d_p)} \cdot \|\mathcal{M}^n_p \, g\|_{L^r(\mathbb{Q}^d_p)} \lesssim \|f\|^2_{L^q(\mathbb{Q}^d_p)}. \end{split}$$

Hence this completes the proof.

References

- [1] Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic press, New York, 1966.
- [2] S. Haran, Riesz potentials and explicit sums in arithmetic, Invent. Math. 101 (1990), 697-703.
- [3] ______, Analytic potential theory over the p-adics, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 4, 905-944.
- [4] Y.-C. Kim, Carleson measures and the BMO space on the p-adic vector space, submitted.
- [5] $___$, L^q -estimates of maximal operators on the p-adic vector space, preprint.
- [6] E. M. Stein, Harmonic Analysis; Real variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, 1993.
- [7] V. S. Vladimirov and I. V. Volovich, p-adic quantum mechanics, Commun. Math. Phys. 123 (1989), 659-676.
- [8] V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-adic Analysis and mathematical physics, Series on Soviet & East European Mathematics, Vol. I, World Scientific, Singapore, 1992.

DEPARTMENT OF MATHEMATICS EDUCATION KOREA UNIVERSITY SEOUL 136-701, KOREA E-mail address: ychkim@korea.ac.kr