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SOME ESTIMATES OF LITTLEWOOD-PALEY TYPE
OPERATORS IN ARITHMETIC

YoNG-CHEOL KM

ABSTRACT. We prove that certain square functions of Littlewood-Paley
type satisfy certain mapping properties on Lq(Qg).

1. Introduction

For a prime number p, let Q, denote the p-adic field. From the standard
p-adic analysis [8], we see that any non-zero element z € (Q, is uniquely
represented in the canonical form xz = p” Z(f;o z;p, v = y(z) € Z, where
z; €{0,1,...,p—1} and zo #.0. Here we call v = y(z) the p-adic valuation
of z and we write v = ord,(z) with convention ord,(0) = co. Then it is well-
known [1, 8] that the nonnegative function |- |, on Q, given by |z|, = pordr(2)
becomes a non-Archimedean norm on @, and @, is defined as the completion of
Q with respect to the norm |-|,. For d € N, let Qg denotes the vector space over
@, which consists of all points x = (z1,x2,...,2Z4), T1,22,...,24 € Q. If we
define [x|, = maxi<;<q ||, for x € Qf, then it is easy to see that |- |, is a non-
Archimedean norm on QZ and moreover Qﬁ is.a locally compact Hausdorff and
totally disconnected Banach space with respect to the norm |-{,. For v € Z, we
denote the ball B, (a) with center a € @g and radius p” and its boundary S.,(a)
by By(a) ={x € @ : |x—a|, <p”} and S,(a) = {x € Q¢ : |x —a|, = p’},
respectively. Since QZ is a locally compact commutative group under addition,
it follows from the standard analysis that there exists a unique Haar measure
dgx on Qﬁ (up to positive constant multiple) which is translation invariant
(i.e., dg(x +a) = dgx) and is normalized by

(11) / dirx = |Bo(0)] = 1,
B (0)

where |E|g denotes the Haar measure of a measurable subset E of Q¢. From
this integration theory, it is easy to obtain |By(a)lu = p’® and |S,(a)lu =
p'4(1 —p~%) for any a € Qg.
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In what follows, we say that a (real-valued) measurable function f defined
on Q¢ is in LI(Q),1 < g < oo, if it satisfies

1/q
iy = ([ ool dux) ~ <o0 120 <00

£z (og) = inf{a: [{x € Q5 : |f(x)| > a}|ln = 0}} < oo.

Here the integral in (1.2) is defined as

/ | f(x |q dgx = hm / |q dgx

= Jim Z /5 FGO dirx,

—oo<y<N Y 5v(0)

(1.2)

(1.3)

if the limit exists. We now mention some of the previous works on harmonic
analysis on the p-adic field Q, as follows; Haran [2, 3] obtained the explicit
formula of Riesz potentials on Q, and developed an analytical potential theory
on the p-adic field Q.

Let f(x) be a complex-valued function on Qg. Then we say that f is locally-
constant if for any x € Q¢ there exists some integer £(x) € Z such that f(x +
x') = f(x) for [x|, < p*™®). We denote by £ (Q2) the class of all locally-constant
functions on Q¢ and we denote by D(QZ) the subclass of all functions in £(Qf)
with compact support. We call a function in D(Qf) a test function on Q. Any
nonzero p-adic number n € @, with ||, = p~ may be written in the unique
form n = Z;iv n;p’, where n; € {0,1,...,p — 1} and n, # 0, as above. We
define a function x, on Q, by

(1.4) xo (1) = [1;2, exp(2rin;p’), <0,
’ L v>0o0r n=0.

Then it turns out (see [8]) that the function x — x,({(§,x)) for each £ € Qg
is an additive character of Q¢ and the group B,(0), where (£,x) is the in-
ner product of £,x € Qg. For g € D(Qg), we define the Fourier transfor-

mation of g by 3g)(€) = §(€) = Jog xp((&,%))9(x) dix for € € Q3. Then

3 D(Qg) - D(Qg) is a unitary isomorphism with the inversion formula
g(x) = an Xp(—(x,£€))g(&) dp€ and with the Parseval-Steklov equalities

/Q RCUSLES /Q RCICEE /@ 3R dirx

_ /(Q §O)h(E) dné, 9,h e D)

p
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Moreover, § is a unitary isomorphism from L?(Q¢) to L?(Q}) with the inversion
formula

g(x) = lim xp(—(%,E)3(€) dué in (@) , g € D(Q}),
T J B4 (0)
and with the Parseval-Steklov equalities on L?(Q¢), because D(Q) is dense in
L2(Q2) (see [8]).
Let M(Qg) denote the set of all measurable functions on QZ For f,g €
M(Q), we define the convolution f g of f and g by

/ F(x = y)g(y) diry, x € Q.

For a function ¢ € M(Qf, , we define a square function S, (f) of Littlewood-
Paley type by

1/2
Scp(f)(X)=(/Q o * F () Tg:) ,xeQ,

¥4

where ¢;(x) = [t|;%p(x/t) for t € Q,. For o, 01, 2., € M(QY) and
n € N, we define another square function S7 { wi}( f) by

1/2
d
82 oy (Nx) = I(sot*fv*wiwf*---*wt()l 2 xed,
It

where 9} (x) = |t|; d@b’(x/t) for t € Q, and i = 1,2,...,n. Our purpose of this
article is to obtain Lq(Qd) -mapping properties of those square functions S, (f)

and S7 (1 (f) under certain conditions on ¢, P2, .., € M(QE) to be
given later.

In what follows, we shall use notations; given two quantities A and B, we
write A < B or B > A if there is a positive constant ¢ (possibly depending on
the dimension d and a prime number p to be given) such that A < cB. We
also write A ~ B if A < B and B < A. We denote by Q5 = @, \ {0}, and by
Cr the characteristic function of a measurable subset F of Qg .

Theorem 1.1. Let ¢ € M(Qf}) be a real-valued function satisfying that

(1.5) sup / o) 4 < 4,
£€50(0) JQ, |tlp

1/2
dyt
(1.6) sup/ / lpe(x —y) — got(x)|2 dgx < B.
y€Q; J {xeQ:Ixlp>lyls} \J Qs [tly

Then S, is a bounded operator from LI(Qf) into Lq((@d) for 1 < q< oo andit
is of weak type (1,1) on L*(Q). Moreover, if J (& fQ |p(t&)|? Lat i t>0is
constant a.e. on So(0), then we have ||fllLe@y S ||S (e S 1l Lacoe)-
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We observe that if p(x) = ¢(]x|,) for x € Q¢ then the assumption (1.6) can
be omitted because | - |, is a non-Archimedean norm on (@;‘f. Thus we have the
following corollary.

Corollary 1.2. Let o € M(Q¢) be a real-valued function satisfying (1.5) and
o(x) = @(x|,) for x € Qﬁ. Then S, is a bounded operator from Lq(Qﬁ)
into LY(Q2) for 1 < ¢ < oo and it is of weak type (1,1) on L'(Q¢). More-
over, if J(&) = fQ |B(te)|? ‘rt"’t > 0 is constant a.e. on Sp(0), then we have

I FlLaozy S N1S.(f )”Lq ©d) S I1fllpacge)-

Theorem 1.3. Let ¢ € M(Q?) be a real-valued function satisfying (1.5) and

(1.6) as in Theorem 1.1, and let ', o2, ... " € M(Qz) be real-valued func-
tions satisfying

(1.7) ’I,bi (X) dpx = a; < 00,
Q3

where ¥ (x) = SUD (y Qe ly|, (x|, } lWi(y)| for i = 1,2,...,n. Then, for each
n €N, 8 ¢y is a bounded operator from L9(Qe) into L(Q) for 2 < q < .

Remark. We could not obtain Lq((@d )-mapping properties of &7 L for 1 <
g < 2. It would be interesting to ask whether the unsettled problem is true or
not.

Corollary 1.4. Let ¢ € M(QR) be a real-valued function satisfying (1.5) and
o(x) = p(x|,) for x € Qg, and let 1,92, ... " € M(QE) be real-valued
functions satisfying (1.7). Then S, 4y is a bounded operator from Lq(@g)
into LY(QE) for 2 < q < co.

Corollary 1.5. Let ¢ € M(QZ) be a real-valued function satisfying (1.5) and
(1.6), and let {¢)'}ien C M(Q2) be a family of real-valued functions satisfying
(A7), If 30 Tlhey 0k < oo, then 300, S7 (wiy 15 a bounded operator from

LI(Q2) into LI(QE) for 2 < q < oc.

2. Preliminary estimates and examples

In this section, we obtain several propositions which shall be useful in fur-
nishing examples to exemplify the main theorems.
Proposition 2.1. If m is a function on Ry satisfying Z:ozolm(p’”’)lp_'yd
< 00, then we have that for any x € Q¢ \ {0},

_dOO

/(Q (=, E)mely) dirt = 1 = St ) - |,d m(plxl; ).

P
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Proof. Tt follows from (1.4) that wa(o) Xp(—(x,€)) du€ = p"*Cp__(0)(x) for
any v € Z. Thus for v € Z we have that

/ o gD dnt
=p"Ch_0)(x) =PV Cp__ 4 (0)(%)
= p(1- P—d)cB_v(o) (x) — pr e Cs_r(0)()-
Hence by (2.1) and simple calculation we obtain that

N
o= nme aue = yim 57w /S | ol E X i

r

(2.1)

7d o

1
— d *'y —1 -1
p” x[,7) — =gmpIx[; ).
N 2 P ) gl

O

Proposition 2.2. If m is a function on Ry satisfying Z:O:o lm(p~)|p~7? <
oo and p(x) = F ' [m(|€]p))(x), then

1/2
dut
sup | | totx=3) = el f) dix = 0.
veQ; JixeQ:ixlp 2y} \/o el

P

Proof. Since | - |, is a non-Archimedean norm on Qg, it easily follows from
Proposition 2.1. O

Example. (a) We consider the kernel o, defined by $q(€) = |€], (1-1€]p)7T, &

€ QF, n € N. By Proposition 2.2, the kernel ¢, satisfies (1.6) of Theorem 1.1.
Thus it suffices to show that

. dHt
7© = [ 1Baer
Qp ,tlp
is constant on S¢(0). Indeed, by the binomial theorem and simple calculation,
we get that
dut
NG
Qp |tlp
= [t IER i)™ dat
ltlp<|€&ls
2n
1 2n 1
={1-= —1)® -
(-3) 2 (D=

< p? (1 — %) i(—l)s (2:> *=p(p- 1"t < 0.

s=0
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Thus it follows from Theorem 1.1 that S,, is of weak type (1,1) on L*(Qf)
and
W llza@e) S NSpa (llzee) S 1 fllnae for 1 <g < oo.

(b) Let @y be the kernel satisfying 3, (&) = exp(—|€[,)|€]7, € € QF, n € N.
Since it is easy to see that > °" |Ps(p~7)|[p™7? < oo, the kernel ¢, satisfies
(1.6) of Theorem 1.1. Thus it is enough to show that

~ dyt
sup |26 (t6)° - < A.
£¢5,(0) g, Ity

In order to show it, we observe that exp(z) > z*/k!, z € R, for all k € N.
From simple calculation, we obtain that for £ € S5(0)

dHt
/ Boter tt!p

~efy m S explll €1l [, ot

(1 - —) (Z exp(—p~ ")pT " + Z exp(—p’*)p”")
<-4+ 0TV

Thus by Theorem 1.1 we conclude that S, is of weak type (1,1) on Ll(@g )
and

17 llzeca2) S 10 (Dllzagan S Ifllzogs) for 1< q < co.

(¢) We consider the kernel ¢. given by &.(€) = |€], (1-1€|p)%, € € QF, ¢ >
0. From Proposition 2.2, we see that the kernel ¢, satisfies (1.6) of Theorem 1.1.
Thus it suffices to show that

&) =/Q lszsc(te)l?%’f >0

is constant on Sp(0). Indeed, by simple calculation, we obtain that for € €
So(0)

- dpt ¢
f, P = [ R i € da
P pSiGle
log, (1€];")

p
=§2 p'(1—-p” 26/ dgt < —— < o0.
> wa-rle [ sty

y=—00

Thus it follows from Theorem 1.1 that if ¢ > 0 then S, is of weak type (1,1)
on L'(Q¢) and

I llaiezy S I1Se. (FllLaesy S fllLeqy) for 1 < g < oo.



LITTLEWOOD-PALEY TYPE OPERATORS IN ARITHMETIC 499

3. The proof of Theorem 1.1

We consider the Hilbert space H = L*(Q,,dut/|t|p) with the inner product

given by (g¢(x), ht(x))n = fQ g+ (x)hy (x) |t|:, g = (gt)teq,, h = (hi)ieq, € H.
Then by applying Fubini’s theorem we have the associative relation of convo-
lution as follows; if f € M(QZ) and g = (g:):cq, € H, then

81 [ foce Fabhdun = [ ([ oraw Tt—’,f:)ﬂy)dHy,

¥4

where @(x) = ¢p(—x). We write |g(x)|y = /{9:(x), g:(x))n for g = (gt)ieq, €

H.

We take any f € L'(Q2)NL*(QL) and g = (9¢)ieq, € LI(Q‘;;H)OLZ’(Q%;’H).
We may assume that J(€) = 8 > 0 a.e. on Sp(0), because the first part can
similarly be obtained from the second part. By the Parseval-Steklov equalities
on L*(Q%) and (1.5), we easily obtain that

(3.2)
s Flsozan = ISoNap = | ( / B ) T dut

= ([ 1en0r ) IFQ dut = 3151 cp

Since (e * f(x), g (%)) < Sp(f)(x)-|g(x)|n by Schwarz’s inequality, it follows
from (3.1), (3.2), and the converse of Holder’s inequality that

/ 1 * dHt
I,

P

(3.3) \

2
L2(Qd) < Bliglizeogm-

We now prove that S, is of weak type (1,1) on Ll((@g). For this, we employ the
p-adic version [4] of the Calderén-Zygmund decomposition of f with aperture
A > 0 as follows;

f=g+b=g+) by
k=1

where {By, : k € N} is a countable family of pairwise disjoint p-adic balls so
that

(a) {x € Q) : [g(x)| > p*A}|n =0,
(b) bi(x) =0 for any x € @ \ By and [y, bi(x)dux =0,
(© ity 1Brle < 5 11fllz s,
(d) llgllz e + 2o 1brllzrey < 311 fllLr@g)-
Then it follows from (3.2) and the p-adic version of Chebyshev’s inequality that

1 . pt
(3.4) [{x € Q@ 118, (a)(x) > M/ 2}Hu < 3llallizn < S 1FllLr -
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If we set 2 = Ugen By, then we have that

(3.5) Oy < + Wl @e)-

It also follows from (1.6), the cancellation property of by, and the integral
Minkowski’s inequality that

{x € Q\Q:Sp(b)(x) > A/2} |

0

2 2
<3 [ S OW k< T [ Satou))dirs

2 - gdHt 1/2
) x—y) =@ 22 dux|buly)| dary
/\; /"EQd\Bk </ I‘Pt( y) SDt() |t|p> " |k )| H

P

IN

< ?AEZ“bkllLl(Qd < “f“Ll(Qd)

Combining this with (3.4) and (3.5), then we obtain that

d
(36 Ixe QSN0 > Min < ZIE2E gy,

We employ the p-adic version [4] of the Calderén-Zygmund decomposition of
g = (9t)teq, € Ll(QZ;H) with aperture A > 0 as follows;

g=h+b=h+ Zbi = (ht)te@p + Z(bi)terv

=1
where {B; : ¢ € N} is a countable family of pairwise disjoint p-adic balls so
that

(a) {x € Q) : |h(x)lx > p*A}w =0,
(b) bi(x) =0o0n @ \ B; and [, bi(x)drx =0 for any t € Qp,

(©) X2 1Bilm < 5 llglley oz
(d) Pl + 22 1B @y < 3llgllreng-
Very similarly to (3.6), we also obtain that

_ dgt
{(xe: /@ wt*gt(x)ﬁ > A}

»
Applying the general p-adic version [5] of the Marcinkiewicz interpolation the-
orem with (3.2) and (3.6), and with (3.3) and (3.7), for 1 < ¢ < 2 we have
that

(3-8) ot * fllLaoairy = I1Se(Hllzsa S IF L@z

(39) [ oot

, Itlp

p?+1+2B

(37) < P gl ago:

H

< gl pagge;r)-

q@)
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Next we treat the case ¢ > 2. Take any f € Lq(Qg). Then it follows
from (3.1), (3.9), the converse of Holder’s inequality, and the p-adic version of
Holder’s inequality that

18 (MNlze(@z)
= llee * Fllzoozm)

_ dgt
310) =, Sup /(/ sot*gt(Y)ﬁ—)f(y)dHy
ol et J0g Ny 'y
_ dyt
< s / oo o 1N ocan) S 1 llzecos),
ol g < 11/2 lo il @2)

where ¢’ is the dual exponent of ¢. From (3.1), (3.8), the converse of Hdlder’s
inequality, and the p-adic version of Holder’s inequality that, we also obtain

that
gt
(3.11) | era < Nalluscossn-
» Itlp 1 Laae)
Finally, the polarization of (3.2) implies that
dyt

(312)  |{xeQl:f(x) # 6/@ pex 1 Do) i = 0

p ¥4

Hence we complete the remaining part by applying (3.8), (3.9), (3.10), (3.11),
and (3.12). O

Corollary 3.1. Suppose that ¢ € M(Qﬁ) be a real-valued function satisfying
(1.5) and (1.6). If 1 < ¢ < co, then we have

Ja
it
Q, ' [t]p

et ‘f@p Bux gu(x) fif;

S HgHLq(Qg;H)-
La(Qg)

Moreover, we have

S A}\ < Hgllo s
H

4. The proof of Theorem 1.3

For a function f € Llloc(@g), we define the Hardy-Littlewood maximal func-
tion of f on Q¢ by

1
My 560 =swp e [ ()] duy.
P& ~vez | By (%) JB, x) |
Then we see [5] that M, is a bounded operator of L"(Q%) into L7(Qg) for

1 <7 < oo and is of weak type (1,1) on L*(Q?). Moreover, it is well known [5]
that for¢ =1,2,...,n,

(3.1) sup |97 * g(x)| < [illz1 gy Mp 9(%)-

teQ,
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Let 2 < g < 0o be given and let r € (1, 00) satisfy 1/r +2/g = 1. We take
any g € L’"(Qg ). Then by Fubini’s theorem and (3.1) we have that

/Qd[ 7 (w3 (D)) g(%) drx

o [ o e OO+ 5w a0 G

—~
o
N

~—

Il

IN

1:] 162112 o /Q ISP MG o) dr.

where M} denotes the n-times iterated composition of M, . Then it follows
from the converse of Holder’s inequality, (3.2), the p-adic version of Holder’s
inequality, and Theorem 1.1 that

157 oy (AlBagey = sup / (82 oy ()P g(x) dirx
b ”g”Lr(Qd) Qd

< / (S(HEP M g(x) dirx
||9||Lr(Qd)<1

< sup ”Scp(f)HLq(Qd) Mz gl Q%) Hf”Lq(Qd)
”g”Lr(Qg)Sl ®

Hence this completes the proof. O
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