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R-GENERALIZED FUZZY COMPACTNESS

CHUN-KEE PARK! AND WoON KEUN MIN 2

ABSTRACT. In this paper, we introduce the concepts of r-generalized fuzzy closed
sets, r-generalized fuzzy continuous maps and several types of r-generalized com-
pactness in fuzzy topological spaces and investigate some of their properties.

1. INTRODUCTION

R. Badard [1] introduced the concept of the fuzzy topological space which is an
cxtension of Chang’s fuzzy topological space [3]. Many mathematical structurcs in
fuzzy topological spaces were introduced and studied. In particular, M. Demirci [5]
and M. K. El Gayyar, E. E. Kerre and A. A. Ramadan [6] studied several types of
compactness in fuzzy topological spaces. K. C. Chattopadhyay and S. K. Samanta
[4] and S. J. Lee and E. P. Lee [7) introduced the concepts of fuzzy r-closure and
fuzzy r-interior in fuzzy topological spaces and obtained some of their propcerties. J.
Balasuramanian and P. Sundaram [2] introduced the concept of gencralized fuzzy
closed scts in a Chang’s fuzzy topology which is an extension of generalized closed
scts of N. Levine (8] in topological spaces.

In this paper, we introduce the concepts of r-generalized fuzzy closed sets, r-
generalized fuzzy continuous maps and several types of r-gencralized compactncess
in fuzzy topological spaces and investigate some of their properties.

2. PRELIMINARIES

Throughout this paper, let X be a nonempty set, I = [0,1] and Iy = (0,1]. The
family of all fuzzy sets of X will be denoted by IX. By 0 and 1 we denotc the
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characteristic functions of ¢ and X, respectively. For any p € IX, u¢ denotes the
complement of y, i.c., u¢ =1 — p.

A fuzzy topology [1,9], which is also called a smooth topology, on X is a map
7 : I — I satisfying the following conditions:

(01) 7(0) = (1) = 1;

(02) Vg g € IX, 7(ju1 A pa) > (1) A 7(12);

(O3) for every subfamily {y; : i € T} C I*, 7(User pi) > Nier 7(us)-

The pair (X,7) is called a fuzzy topological space (for short, fts), which is also
called a smooth topological space.

Definition 2.1 ([4,7]). Let (X,7) be a fts. For 4 € IX and r € Iy, the fuzzy
r-closure of i1 is defined by

c(p.r)=nNpeIX| p<p, 7(o°) > 1}
and the fuzzy r-interior of y is defined by

int(u.r) =V{p € IX| p> p, 7(p) >r}.

For r € Ip, we call p a fuzzy r-open set of X if 7(u) > r and p a fuzzy r-closed
set of X if 7(u¢) > r.

Theorem 2.2 ([4]). Let (X, ) be a fts. Then for uy, A € IX and r,s € Iy,
(1) el(0,7) =0,
(2) w <),
(3) d(p,r) < cl(p,s) ifr <s,
(4) cd(uVAr)=cp,r)Ver),
(5) cl(cl(u,r),r) = cl(p,r).

Theorem 2.3 ([7]). Let (X, 7) be a fts. Then for u, A € IX andr, s € Iy,
(1) int(1,r) =1,
(2) int(p.r) < p,
(3) int(p,r) > int(u,s) if r < s,
(4) int(u A X 1) =int(p.7) Aint(\, 1),
(8) int(int(p,r),r) = int(u.r).

Theorem 2.4 ([7]). Let (X,7) be a fts. Then for p € IX and r € Iy,

(1) int(p,r)° = cl(u,r),
(2) clp,r)® =int(us ).
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Definition 2.5 ([7]). Let (X.7) and (Y.0) be fts’s and » € I;. Then a map
f:(X.7) - (Y.0) is called

(1) a fuzzy r-continuous map if f~1(u) is a fuzzy r-open sct of X for cach fuzzy
r-open set p of Y, or equivalently, f~1(u) is a fuzzy r-closed sct of X for
cach fuzzy r-closed set p of Y.

(2) a fuzzy r-open map if f(u) is a fuzzy r-open set of Y for cach fuzzy r-open
sct u of X.

(3) a fuzzy r-closed map if f(u) is a fuzzy r-closed set of Y for cach fuzzy r-closed
sct o of X.

3. R-GENERALIZED Fuzzy CLOSED SETS

Definition 3.1. Let (X, 7) be a fts, y, p € IX and r € Io.

(1) A fuzzy sct p is called r-generalized fuzzy closed (for short, r-gfc) if cl(p, ) <
p whenever 4 < p and 7(p) > r.
(2) A fuzzy sct p is called r-generalized fuzzy open (for short, r-gfo) if p¢ is r-gfc.

Theorem 3.2. Let (X, 7) be a fts and T € Iy.

(1) If p1 and po are r-gfc sets, then pq V po is a r-gfc set.

(2) If p is a r-gfc set and p < X < cl(u,r), then X is a r-gfc set.

(3) If p is a fuzzy r-closed set, then pu is a r-gfc set.

(4) p is a r-gfo set if and only if p < int(u,r) whenever p < p and 7(p°) >r.
(5) If u1 and ps are r-gfo sets, then ui A po s a T-gfo set.

(6) If u is a r-gfo set and int(u,r) < X < u, then \ is a r-gfo set.

(7) If i is a fuzzy r-open set, then u is a r-gfo set.

Proof. (1) Let py and ps be r-gfc sets, py V po < p and 7(p) > r. Then pg < p and
p2 < p. Since p1 and 9 are r-gfe sets, cl(u1,7) < p and cl(p2,7) < p. By Theorem
2.2, cd(p V pa,r) = cl(pa, ) V cl(pa,7) < p. Thus pg V po is a r-gfc set.

(2) Let A < pand 7(p) > r. Since u < A, 1 < p. Since p is a r-gfc set, cl{p, r) < p.
Since A < el(p, 1), (A r) < d(c(u,r),r) = c(u,7) < p. Hence A is a r-gfc sct.

(3) It follows directly from Definition 3.1.

(4) It follows easily from Definition 3.1 and Theorem 2.4.

(5) The proof is similar to (1).
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(6) Since int(u,r) < X < p, u¢ < A€ < dnt(p,r)¢ = c(us, 7). Since y is a r-gfo
sct, 1€ is a r-gfc sct. By (2), A¢ is a r-gfc sct. Hence A is a r-gfo sct.
(7) It follows directly from Definition 3.1. O

Example 3.3. The interscction of two r-gfc scts need not be a r-gfc sct and the
union of two r-gfo sets nced not be a r-gfo set.

Let X = {x1,22,23} and p1, po and u3 be fuzzy sets of X defined as

0 ifx=ux9,x3,
pi(z) = .
1 ifzx=umz,

0 ifz = I3,
p2(z) = .
1 ifx =z,

0 ifzx=uax9
p3(z) = .
1 ifz= r1,I3.

Define 7 : IX — I by

1 ifpu=01,
$ =,
m(w)=q35 if p=ps,
i if p=ps,
0 otherwise.

Then 7 is a fuzzy topology on X. It is easy to show that uo and pg arc %-gfc scts.
c{po A s, g) = cl(u1, %) =1, paAps = py and T(u1) = % but el(pq Aps, %) =1¢ p1.
Hence ps A pg is not a %-gfc set.

By taking complement in the above example, we know that the union of two r-gfo
scts need not be a r-gfo sct.

Example 3.4. Every r-gfc sct need not be a fuzzy r-closed set and every r-gfo sct
nced not be a fuzzy r-open set.

Let X = {z1,22,23} and p; and py be fuzzy sets of X defined as

0 ifzx=ux5, x5,
p(z) = .
1 ifz=ux,

if x = 21, 2.

0 ifx=ux3,
u2($)={1 ’
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Define 7 : IX — I by

1 ifpu=0,1,

2 .

g i p=p,
Tw=¢3 .0

3 if H = U2,

0 otherwise.

Then 7 is a fuzzy topology on X. It is casy to show that /12 is a % gfc sct. Smcc
T(us) =0 ? 2 5, M2 is not a fuzzy g—closed set. Since o is a % gfc set usis a £ gfo
sct. Since 7(p§) = 0 ¥ 2 2, 4§ is not a fuzzy 2 g-open set.

Definition 3.5. Let (X, 7) be a fts. For u € IX and r € I, the r-generalized fuzzy
closure of p is defined by

gel(p,r) = Mp € I*| p < p, pis r-gle}.
and the r-generalized fuzzy interior of i is defined by

gint(u.r) = Vi{p € I| 4 > p, p is r-glo}.

Theorem 3.6. Let (X, 7) be a fts. Then for u, A € I and r,s € Iy,

(1) gel(0,r) =0

(2) p < gcl(p, )

(3) gel(p.r) < gel(p, s) if r <s,

(4) gcl(p.r) < gcd(A\.r) if p< A,

(5) gel(p Vv A.r) = gc(p,r)V g\, 1),
(6) gel(gel(p,r),r) = gel(u,r),

(7) gel(p.r) < cl(p,r).

Proof. (1), (2),(3) and (4) are easily obtained from Definition 3.5.

(5) Since p < pVAand A < pV A gellp.r) < gel(uV Ar)and gd(h.r) <
gcl(p VvV A7) by (4). Hence gel(u,7) V gel(A.r) < gel(uV A, r).

Conversely, suppose that gcl(u,r) V gc(A.r) # gcl(u V A.r). Then there exist
z € X and t € (0,1) such that gcl(u. 7){z)V g\, r){(x) <t < gel(pV A, r)(z). Since
gel(p.r)(z) < t and gcl(A, 7)(x) < t, there exist r-gfc scts uy and A; with u < py
and A < Aq such that p1(z) < tand A(z) < t. Since uVA < pg VA and gy VAris a
r-gfc set by Theorem 3.2, gcl(pV A, r)(z) < (u1VA1)(z) < ¢. This is a contradiction.
Hence gel(p,r) V gel(A.r) > gel(p V A, ). Thus gel(p,r) V gel(A,r) = gel(p V A.r).

(6) gcl(p,r) < gel(gel(p.7),7) by (2) and (4).
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Supposc that gcl(p.r) 2 gcl(gel(u,r),r). Then there exist 2 € X and t € (0,1)
such that gcl(p.r)(z) < t < gel(gel(p,r),r)(x). Since gel(p.r)(z) < t, there exists
r)(z) < w(z) <t Since p < py,

r)

a r-gfc set p; with g < py such that gel(p.

gcl(p.r) < py and gel(gel(u.r),r) < p1 by (4). Hence
)

gel(gel(p,r),r)(x) < pa(z) <
This is a contraction. Hence gel(u,r) > gel(gel(p,r),7). Thus gcl(gel(p. r),r) =
gel(p.r).

(7) Since cl(p,r) is a fuzzy r-closed set, cl(u.r) is a r-gfc sct by Theorem 3.2.
Hence gel(p, r) < cl(u, ) by Definition 3.5. 0
Theorem 3.7. Let (X,7) be a fts. Then for u, A € IX and r,s € Iy,

(1) gint(1,r) =1,

(2) gint(p.r) < p,

(3) gint(p.r) > gint(p. s) if r < s,

(4) gint(p.r) < gint(A.r) if p < A,

(5) gint(p A X, 1) = gint(p, 1) A gint(A.1),

(6) gint(gint(u,r),7) = gint(u,r),

(7) int(p.r) < gint(p,7).
Proof. The proof is similar to Theorem 3.6. 0
Theorem 3.8. Let (X, 7) be a fts. Then for u € IX and r € I,

(1) gel(p.7)¢ = gint(p®,r),
(2) gint(u.r)® = gel(p®,r).

Proof. (1) From Definition 3.5, we have
gel(p.7)° = (M{p € I*| p < p, pis r-gfc})*
= V{p® € I*| u° > p°, p° is r-gfo}
=Vv{re€ IX| u® > A, Xis r-gfo}
= gint(u,r).
(2) The proof is similar to (1). O

Theorem 3.9. Let (X,7) and (Y,0) be fts’s andr € Iy. If f : (X,7) — (Y,0) is
a fuzzy r-continuous and fuzzy r-closed map, then f(pu) is a r-gfc set of Y for each
r-gfc set u of X.
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Proof. Let f(u) < pand o(p) > r. Then u < f~1(p). Since f is a fuzzy r-continuous
map, 7(f}(p)) > r. Since p is a r-gfc set, cl(p.r) < f71(p), ic., fc(p.7)) < p.
Since f is a fuzzy r-closed map and cl(u,r) is a fuzzy r-closed set, f(cl(u.r)) is a

fuzzy r-closed sct. Hence cl(f(u),r) < d(f(cd(u,7)),7) = f(cl(p.7)) < p. Thus f(u)
isargfcsctof Y. |

Theorem 3.10. Let (X.7) and (Y,0) be fis'sandr € Iy. If f : (X,7) — (Y.,0) is
a bijective, fuzzy r-continuous and fuzzy r-open map, then f(u) is a r-gfo set of ¥
for each r-gfo set u of X.

Proof. Let p < f(u) and o(p®) > 7. Since f is injective, f~1(p) < f71(f(p)) = -
Since f is a fuzzy r-continuous map and p is a fuzzy r-closed set, f~*(p) is a fuzzy
r-closed set, i.c., 7((f71(p))¢) > r. Since p is a r-gfo set of X, f~1(p) < int(u.7).
Since f is a fuzzy r-opcn map and int(u,r) is a fuzzy r-open set, f(int(u,r)) is
a fuzzy r-open sct and so f(int(p.r)) = int(f(int(p,7)),r). Since f is surjective,
p= F(£1(p)) < flint(n,r)) = int(f(int(u,r)),) < int(f(),r). Hence f(u)is a
r-gfo sct of Y. O

4. R-GENERALIZED Fuzzy CONTINUOUS MAPS

Definition 4.1. Let (X.7) and (Y,0) be fts’sand r € Iy and let f: (X,7) — (Y.0)
be a map.

(1) f is called r-generalized fuzzy continuous (for short, r-gf-continuous) if
FX(p) is a r-gfc set of X for each fuzzy r-closed set p of Y.

(2) f is called strongly r-generalized fuzzy continuous (for short, strongly r-gf-
continuous) if f~1(u) is a fuzzy r-closed set of X for each r-gfc set u of
Y.

(3) fis called r-generalized fuzzy irresolute (for short, r-gf-irresolute) if f~* ()
is a r-gfc set of X for each r-gfc set p of Y.

(4) f is called r-generalized fuzzy open (for short, r-gf-open) if f(p) is a r-gfo
sct of Y for each fuzzy r-open set p of X.

(5) f is called strongly r-generalized fuzzy open (for short, strongly r-gf-open) if
f(p) is a r-gfo set of Y for each r-gfo set p of X.

Remark 4.2. Let (X,7) and (Y,0) be fts’s and r € Ip and let f: (X,7) — (Y.0)
be a map.
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(1) If f is fuzzy r-continuous, then f is r-gf-continuous.

(2) If f is r-gf-irresolute, then f is r-gf-continuous.

(3) If f is strongly r-gf-continuous, then f is r-gf-irresolute.

(4) If f is fuzzy r-open, then f is r-gf-open.

(5) If f is strongly r-gf-open, then f is r-gf-open.

(6) If f is bijective, fuzzy r-continuous and fuzzy r-open, then f is strongly
r-gf-open.

Example 4.3. Thc converse of Remark 4.2(1) is not true, i.c., cvery r-gf-continuous
map need not be a fuzzy r-continuous map.
Let X = {z1,22} and p; and py be fuzzy scts of X defined as

1 .
= ifx =1,
pix) = {‘11 D
5 ifz=umx,
1 oifp—
_ 3 ur=umr,
) =
Ha(@) {% if £ = xo.
DeﬁneT:IX—>Iandcr:IX-—>Iby
1 ifp=0o0rl,
(W) =93 if p=po,
0 otherwise.
1 ifp=0or1,
o(p) =<3 if p=p,
0 otherwise,

then 7 and o are fuzzy topologies on X. It is easy to show that an identity map
idx : (X,7) — (X.0) is 3-gf-continuous. But idx : (X,7) — (X,0) is not fuzzy
3-continuous because 1 is a fuzzy 3-open set in (X, o) but idx*(p1) = w1 is not a
fuzzy %-opcn set in (X, 7).

Example 4.4. The converse of Remark 4.2(2) is not true, i.e., every r-gf-continuous
map need not be a r-gf-irresolute map.

Let X = {x1,22} and p1, 2 and p3 be fuzzy sets of X defined as
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L oifg=
N i ur=uar,
xTr) =
H3(@) {% if z = xs.
DeﬁneT:IX—>Ianda:IX—>Iby
1 ifu=0o0orl,
() = % if 4= po,
0 otherwise,
1 ifu=0orl,
o(p)y=93 ifp=p1,
0 otherwise,

then 7 and o are fuzzy topologies on X. It is easy to show that an identity map
idx 1 (X.7) — (X.0) is %—gf—continuous. Clearly, us is a —é——gfc set in (X.o). Since
#3 < p2 and 7(p2) = 1 but cl(us, 3) =1 & pp, idy! (us) = ps is not a 1-gfe sct in
(X.7). Hence idx : (X.7) — (X,0) is not 3-gf-irresolute.

Theorem 4.5. Let (X,7) and (Y,0) be fts’s and r € Iy and let f: (X,7) — (Y. 0)
be a map. Then the following are equivalent:

(1) f is r-gf-continuous.
(2) f7Y(n) is a r-gfo set of X for each fuzzy r-open set p of Y.

Proof. 1t is straightforward. 0
Theorem 4.6. Let (X,7) and (Y,0) be fts’s and r € Iy and let f: (X, 7) — (Y. 0)
be a map. Then the following are equivalent:

(1) f is strongly r-gf-continuous.

(2) f~Y(n) is a fuzey r-open set of X for each r-gfo set p of Y.
Proof. 1t is straightforward. U

Theorem 4.7. Let (X,7) and (Y,0) be fts’s andr € Iy. If f: (X,7) — (Y,0) isa
7-gf-continuous map, then f(gcl(p,r)) < c(f(w),r) for each p € IX.

Proof. For cach p € I*, cl(f(u),r) is a fuzzy r-closed sct of Y. Since f is r-
gf-continuous, f~1(cl(f(u),r)) is a r-gfc set of X. p < f (cl(f(n),r)) and so
gel(p.r) < F74el(f(1), 7)) by Definition 3.5. Hence f(gcl(p, 7)) < cl(f(p),r). O

Theorem 4.8. Let (X,7) and (Y,0) be fts’s andr € Iy. Then f: (X,7) — (Y,0)
is a r-gf-irresolute map if and only if f~1(u) is a r-gfo set of X for each r-gfo set p
of Y.
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Proof. 1t is straightforward. O

Theorem 4.9. Let (X.7), (Y.0) and (Z,v) be fts'sandr € Iy. If f: (X.7) —
(Y.0) is a r-gf-irresolute map and g : (Y.o) — (Z,v) is a r-gf-continuous map, then
gof:(X.7) = (Z.v) is a r-gf-continuous map.

Proof. 1t is straightforward. O

Theorem 4.10. Let (X.7) and (Y.0) be fts'sandr € Iy. If f: (X.7) — (Y.0) is
a r-gf-irresolute map, then

(1) flgel(p.r)) < gel(f(n),r) for each p € I,
(2) gel(f~H(u),r) < f~Ygel(u, 7)) for each p € I*,
(3) f~ N gint(u,r)) < gint(f~(u),7) for each p € IV.

Proof. (1) For each u € IX, we have

FHgel(f(w),m)) = FHM{p e I¥| f(1) < p, p is r-gfc})
>fHMp el < fHp) pis r-ghc})
> MF U p) e X < £74(p), f71(p) is r-gfc})
> AX e I*| p <A, s rgfc}
= gel(p,r).
Hence f(gel(p.r)) < gel(f(n), 7).
(2) For cach p € IY, we have
FHgel(u,r) = fHMp e I¥| p < p, pis r-gfc})
> Npel”| f7Hw) < 77 p), pis r-ghc})
> M Hp) € IX| f7Hw) < £7Hp), F71(p) is r-gfc})
> A{d e IX| f7 () < A, Xis r-gfc}
= gcl(f~ (), 7).
Hence gel(f~(p),7) < £~ (gel(p. 7).
(3) For cach p € IV, we have
FUgint(u,r)) = fHV{p € I"| p < p, p is r-gfo})
< fHV{p e IM| F7Hp) < F7H(w), pis r-glo})
<SV{F o) e I¥| £7Hp) < (), £ (p) is r-gfo})
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<v{xe X A< 7 (w), Xis r-gfo}
= gint(f ' (u), 7).
Hence f~Y(gint(p, 7)) < gint(f~1(n), 7). O

Theorem 4.11. Let (X, 7) and (Y,0) be fts’s andr € Ip. If f: (X,7) — (Y,0) is
a strongly r-gf-open map, then f(gint(u,r)) < gint(f(p),r) for each p € Ix,

Proof. For cach p € I, we have
flgint(p.r)) = f(V{p € I| p < ., p is r-gfo})
< f(v{p € I*| f(p) < f(u), pis r-gfo})
<V{f(p) € I"| f(p) < f(w), f(p) is r-gfo})
<V{A e IY| A< f(u), Xis r-gfo}
— gint(f(u),r).
Hence f(gint(p, 7)) < gint(f{(p),r). O

5. SEVERAL TYPES OF R-GENERALIZED FUzzy COMPACTNESS

A collection {u;| i € T} of fuzzy r-open sets of X is called a fuzzy r-open cover
of X if Vierp; = 1.

A collection {p;| i € T'} of r-gfo sets of X is called a r-gfo cover of X if Vierp; = 1.

Definition 5.1. Let (X, 7) be a fts and r € I.

(1) (X.7) is called fuzzy r-compact if for every fuzzy r-open cover {u;| i € I'} of
X, there exists a finite subset I'y of I' such that Vier u; = 1.

(2) (X.7) is called nearly fuzzy r-compact if for every fuzzy r-open cover {u;| i €
'} of X, there exists a finite subset Tg of I such that Vieryint{cl(u:, r),r) =
i.

(3) (X.7)is called almost fuzzy r-compact if for every fuzzy r-open cover {u;] @ €
'} of X, there exists a finite subset Ig of I' such that Vier,cl(pi,7) = 1.

(4) (X.7) is called strongly nearly fuzzy r-compact if for every fuzzy r-open
cover {u;| i € T} of X, there exists a finite subset g of T’ such that
Vierogint(gel(ui, ), ) = 1.

(5) (X.7) is called strongly almost fuzzy r-compact if for cvery fuzzy r-open
cover {u;| i € T'} of X, there exists a finite subset I'g of T' such that
Viepogcl(,ui,'r) =1
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(6) (X.7)is called fuzzy r-regular if cach fuzzy r-open set p of X can be written
as p=V{p e I"| 7(p) > 7(p), cl(p,r) < u}.

Definition 5.2. Let (X, 7) be a fts and r € I,.

(1) (X.7) is called rgeneralized fuzzy compact (for short, r-gf-compact) if for
every 1-gfo cover {p;] i € T} of X, there exists a finite subset Ty of I" such
that Vierou; = 1.

(2) (X.7) is called nearly r-generalized fuzzy compact (for short, ncarly r-gf-
compact) if for every r-gfo cover {y;] i € I'} of X there exists a finite subset
Lo of T such that Viep,gint(gel(ps,r),r) = 1.

(3) (X.7) is called almost r-generalized fuzzy compact (for short, almost r-gf-
compact) if for every r-gfo cover {;| i € T'} of X, there exists a finite subset
I'o of I such that Ve gel(p;, ) = 1.

(4) (X.7) is called r-generalized fuzzy reqular (for short, r-gf-regular) if cach
r-gfo set 4 of X can be written as u = V{p € I*|p is -gfo, gcl(p. ) < u}.

Theorem 5.3. Let (X, 7) be a fts and r € Iy. Then

(1) If (X, 1) is r-gf-compact, then (X, 7) is fuzzy r-compact.

(2) If (X,7) is almost r-gf-compact, then (X,7) is strongly almost fuzzy r-
compact.

(3) If (X.7) is strongly almost fuzzy r-compact, then (X, 7) is almost fuzzy r-
compact.

(4) If(X.7) is nearly r-gf-compact, then (X, ) is strongly nearly fuzzyr-compact.

Proof. Tt is straightforward. ]

Theorem 5.4. Let (X,7) be a fts and r € Iy. Then (X,T) is r-gf-compact = (X, 1)

is nearly r-gf-compact = (X, 7) is almost r-gf-compact.
Proof. Tt is straightforward. O

Theorem 5.5. Let (X,7) be a fts and r € Iy. Then (X,7) is fuzzy r-compact =
(X.7) is nearly fuzzy r-compact = (X, 7) is almost fuzzy r-compact.

Proof. 1t is straightforward. U

Theorem 5.6. Let (X,7) be a fts and r € Iy. Then (X, 7) is fuzzy r-compact =
(X.7) is strongly nearly fuzzy r-compact = (X, ) is strongly almost fuzzy r-compact.
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Proof. 1t is straightforward. U

Theorem 5.7. Let (X,7) be a fts and r € Iy. If (X,7) is almost r-gf-compact and
r-gf-regqular, then (X, 7) is r-gf-compact.

Proof. Let {u;] i € T} be a r-gfo cover of X. Since (X.7) is r-gf-regular, p; =
Viea{ps; € IX| pj, is r-gfo, gcl(pj,,r) < p} for cach ¢ € T. Since Vierp; =
Vier(Vjiespj;) = 1 and (X, 7) is almost r-gf-compact, there exists a finite subfamily
{p; € IX| p; is r-gfo, j € J} such that Vjesgel(p;,r) = 1. Since for cach j € J
there exists 4 € T such that gel(p;,7) < pi, we have Ve u; = 1, where I'g is a finite
subset of I'. Hence (X, 7) is r-gf-compact. O

Theorem 5.8. Let (X.7) be a fts and r € Iy. If (X.7) is almost fuzzy r-compact
and fuzzy r-regular, then (X, 1) is fuzzy r-compact.

Proof. The proof is similar to Theorem 5.7. U

Theorem 5.9. Let (X,7) and (Y.0) be fts’s andr € Iy and let f: (X,7) — (Y. 0)
be a surjective r-gf-continuous map. If (X.7) is r-gf-compact, then (Y,o) is fuzzy
r-compact.

Proof. 1t is straightforward. O

Theorem 5.10. Let (X, 7) and (Y.0) be fts’s andr € Iy and let f : (X.7) — (Y. 0)
be a surjective strongly r-gf-continuous map. If (X,7) is fuzzy r-compact, then (Y. o)
is r-gf-compact.

Proof. Let {1;] i € T} be a r-gfo cover of Y. Since f is strongly r-gf-continuous, by
Theorem 4.6 {f~(p;)| i € T} is a fuzzy r-open cover of X. Since (X,7) is fuzzy
r-compact, there exists a finite subset 'y of T such that Vier, f1 (1) = 1x. Since
f is surjective, 1y = f(Ix) = f(Vierof 1)) = Vierof (f 1(1)) = Vieroms, i.c.,
Vieroiti = ly. Hence (Y, 0) is r-gf-compact. 0

Theorem 5.11. Let (X,7) and (Y.o) be fts’s andr € Iy and let f : (X,7) — (Y, 0)
be a surjective r-gf-continuous map. If (X, 7) is almost r-gf-compact, then (Y.o) is
almost fuzzy r-compact.
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Proof. Let {pi] i € T'} be a fuzzy r-open cover of Y. Since f is r-gf-continuous,
by Theorem 4.5 {f~'(y;)| i € '} is a r-gfo cover of X. Since (X, 7) is almost r-gf-
compact, there exists a finite subset T'g of I' such that Vier,gcl(f~!(ui),r) = Ix.
Since f is surjective,

ly = f(ix) = f(Vierogel(f (1), 7)) = Viero f(gel(f (1), 7).

Since f is r-gf-continuous, by Theorem 4.7 f(gel(f~1(1:),7)) < c(f(F1(ms)),7)-
Hence Iy = Vier, £(9el(f~ (1), 7)) < Viero@l(f( 7 (ui)),7) = Vierocl(ai, )
Thus Vier, cl(ps,r) = 1y.

Hence (Y. o) is almost fuzzy r-compact. O

Theorem 5.12. Let (X,7) and (Y.0) be fts’s andr € Iy and let f : (X, 7) — (Y. 0)
be a surjective fuzzy r-continuous map. If (X, T) is strongly almost fuzzy r-compact,

then (Y, o) is almost fuzzy r-compact.
Proof. The proof is similar to Theorem 5.11. 0

Theorem 5.13. Let (X,7) and (Y.0) be fis’s andr € Iy and let f : (X,7) — (Y,0)

be a surjective r-gf-irresolute map. Then

(1) If (X.7) is r-gf-compact, then (Y, o) is r-gf-compact.
(2) If (X,7) is almost r-gf-compact, then (Y, o) is almost r-gf-compact.

Proof. (1) It is straightforward.

(2) Let {u;} i € T'} be a r-gfo cover of Y. Since f is r-gf-irresolute, by Theorcm
4.8 {f~'(w)| i € T} is a r-gfo cover of X. Since (X,7) is almost r-gf-compact,
there exists a finite subset g of I such that Vierogel(f 1 (), r) = 1x. Since f is
surjective, Iy = f(Ix) = f(Vierogel(f ™ (1), 7)) = Vier, f(gel(f~*(mi),r)). Since
[ is r-gf-irresolute, by Theorem 4.10 f(gcl(f~ (1), 7)) < gel(f(f (1)), 7). Hence
ly = Vierof(9el(f 7 (#),7)) < Vierogel (F(f~*(1))r) = Vierogel(us,). Thus
Vierogcl(pi,r) = 1y. Hence (Y, o) is almost r-gf-compact. g

Theorem 5.14. Let (X,7) and (Y.o) befts’sand r € Ipand let f: (X,7) — (Y, 0)
be a surjective, fuzzy r-continuous and r-gf-irresolute map. If (X,7) is strongly

almost fuzzy r-compact, then (Y, o) is strongly almost fuzzy r-compact.

Proof. The proof is similar to Theorem 5.13. O
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Theorem 5.15. Let (X,7) and (Y.0) be fts’s andr € Iy and let f: (X, 7) — (Y., 0)
be a surjective, r-gf-irresolute and strongly r-gf-open map. If (X,7) is nearly r-gf-
compact, then (Y,a) is nearly r-gf-compact.

Proof. Let {u;] i € T} be a r-gfo cover of Y. Since f is r-gf-irresolute, by
Theorem 4.8 {f Y(w;)] i € T} is a r-gfo cover of X. Since (X.7) is ncarly r-
gf-compact, there exists a finite subset I'y of T’ such that Vier,gint(gel(f=!(w:),
r),r) = 1x. Since f is surjective, 1y = f(Ix) = f(Vierogint(gcd(f (i), 7),7)) =
Vierg f(gint(gel(f ~*(us),7),7)). Since f is strongly r-gf-open, by Theorem 4.11
fgint{gel (f~Y(pi),7),7)) < gint(f(gcl(f~'(ui),r)),r) for cach ¢ € I'. Since f
is r-gf-irrcsolute, by Theorem 4.10 f(gcl(f~(wi), 7)) < gcl(f(f~(wi)),r). Hence
we have

1y = Vierof (gint(gel(f~* (1), 7),7))
< Vierogint(f(gel(f~ (wi), 7)), )
< Vierogint(gel(f (f (1)), r), )
= Vierpgint(gel(p;,r),r).

, T

Thus Vier, gint(gel(ps, r),r) = 1y. Hence (Y. o) is nearly r-gf-compact. O
We obtain the following corollary from Theorem 5.15 and Remark 4.2.
Corollary 5.16. Let (X.7) and (Y.0) be fts’s andr € Iy and let f : (X, 7) — (Y.0)

be a bijective, fuzzy r-continuous, fuzzy r-open and r-gf-irresolute map. If (X,7T) is
nearly r-gf-compact, then (Y, o) is nearly r-gf-compact.

Theorem 5.17. Let (X,7) and (Y,0) be fts’s, 7 € Iy and let f : (X,7) — (Y,0) be
a surjective, fuzzy r-continuous, r-gf-irresolute and strongly r-gf-open map. If (X, 1)

is strongly nearly fuzzy r-compact, then (Y, o) is strongly nearly fuzzy r-compact.

Proof. The proof is similar to Theorem 5.15. 0
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