R-GENERALIZED FUZZY COMPACTNESS

CHUN-KEE PARK 1 AND WON KEUN MIN 2

ABSTRACT. In this paper, we introduce the concepts of r-generalized fuzzy closed sets, r-generalized fuzzy continuous maps and several types of r-generalized compactness in fuzzy topological spaces and investigate some of their properties.

1. Introduction

R. Badard [1] introduced the concept of the fuzzy topological space which is an extension of Chang's fuzzy topological space [3]. Many mathematical structures in fuzzy topological spaces were introduced and studied. In particular, M. Demirci [5] and M. K. El Gayyar, E. E. Kerre and A. A. Ramadan [6] studied several types of compactness in fuzzy topological spaces. K. C. Chattopadhyay and S. K. Samanta [4] and S. J. Lee and E. P. Lee [7] introduced the concepts of fuzzy r-closure and fuzzy r-interior in fuzzy topological spaces and obtained some of their properties. J. Balasuramanian and P. Sundaram [2] introduced the concept of generalized fuzzy closed sets in a Chang's fuzzy topology which is an extension of generalized closed sets of N. Levine [8] in topological spaces.

In this paper, we introduce the concepts of r-generalized fuzzy closed sets, r-generalized fuzzy continuous maps and several types of r-generalized compactness in fuzzy topological spaces and investigate some of their properties.

2. Preliminaries

Throughout this paper, let X be a nonempty set, I = [0, 1] and $I_0 = (0, 1]$. The family of all fuzzy sets of X will be denoted by I^X . By $\tilde{0}$ and $\tilde{1}$ we denote the

Received by the editors December 12, 2006 and, in revised form, July 19, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 54A40, 54A05, 54C08.

Key words and phrases. fuzzy topology, r-generalized fuzzy closed sets, r-generalized fuzzy continuous maps, r-generalized fuzzy compactness.

characteristic functions of ϕ and X, respectively. For any $\mu \in I^X$, μ^c denotes the complement of μ , i.e., $\mu^c = \tilde{1} - \mu$.

A fuzzy topology [1,9], which is also called a smooth topology, on X is a map $\tau: I^X \to I$ satisfying the following conditions:

- (O1) $\tau(\tilde{0}) = \tau(\tilde{1}) = 1$;
- (O2) $\forall \mu_1, \mu_2 \in I^X$, $\tau(\mu_1 \wedge \mu_2) \ge \tau(\mu_1) \wedge \tau(\mu_2)$;
- (O3) for every subfamily $\{\mu_i : i \in \Gamma\} \subseteq I^X$, $\tau(\cup_{i \in \Gamma} \mu_i) \ge \wedge_{i \in \Gamma} \tau(\mu_i)$.

The pair (X, τ) is called a fuzzy topological space (for short, fts), which is also called a smooth topological space.

Definition 2.1 ([4,7]). Let (X,τ) be a fts. For $\mu \in I^X$ and $r \in I_0$, the fuzzy r-closure of μ is defined by

$$cl(\mu, r) = \wedge \{ \rho \in I^X | \mu \le \rho, \ \tau(\rho^c) \ge r \}$$

and the fuzzy r-interior of μ is defined by

$$int(\mu, r) = \bigvee \{ \rho \in I^X | \mu \ge \rho, \ \tau(\rho) \ge r \}.$$

For $r \in I_0$, we call μ a fuzzy r-open set of X if $\tau(\mu) \geq r$ and μ a fuzzy r-closed set of X if $\tau(\mu^c) \geq r$.

Theorem 2.2 ([4]). Let (X, τ) be a fts. Then for $\mu, \lambda \in I^X$ and $r, s \in I_0$.

- $(1) cl(\tilde{0},r) = \tilde{0},$
- (2) $\mu \leq cl(\mu, r)$,
- (3) $cl(\mu, r) \leq cl(\mu, s)$ if $r \leq s$,
- (4) $cl(\mu \vee \lambda, r) = cl(\mu, r) \vee cl(\lambda, r),$
- (5) $cl(cl(\mu, r), r) = cl(\mu, r)$.

Theorem 2.3 ([7]). Let (X, τ) be a fts. Then for $\mu, \lambda \in I^X$ and $r, s \in I_0$,

- (1) $int(\tilde{1},r) = \tilde{1}$,
- (2) $int(\mu, r) \leq \mu$,
- (3) $int(\mu, r) \ge int(\mu, s)$ if $r \le s$,
- (4) $int(\mu \wedge \lambda, r) = int(\mu, r) \wedge int(\lambda, r),$
- (5) $int(int(\mu, r), r) = int(\mu, r)$.

Theorem 2.4 ([7]). Let (X, τ) be a fts. Then for $\mu \in I^X$ and $r \in I_0$,

- (1) $int(\mu, r)^c = cl(\mu^c, r),$
- (2) $cl(\mu, r)^c = int(\mu^c, r)$.

Definition 2.5 ([7]). Let (X, τ) and (Y, σ) be fts's and $r \in I_0$. Then a map $f: (X, \tau) \to (Y, \sigma)$ is called

- (1) a fuzzy r-continuous map if $f^{-1}(\mu)$ is a fuzzy r-open set of X for each fuzzy r-open set μ of Y, or equivalently, $f^{-1}(\mu)$ is a fuzzy r-closed set of X for each fuzzy r-closed set μ of Y.
- (2) a fuzzy r-open map if $f(\mu)$ is a fuzzy r-open set of Y for each fuzzy r-open set μ of X.
- (3) a fuzzy r-closed map if $f(\mu)$ is a fuzzy r-closed set of Y for each fuzzy r-closed set μ of X.

3. R-GENERALIZED FUZZY CLOSED SETS

Definition 3.1. Let (X, τ) be a fts, $\mu, \rho \in I^X$ and $r \in I_0$.

- (1) A fuzzy set μ is called r-generalized fuzzy closed (for short, r-gfc) if $cl(\mu, r) \le \rho$ whenever $\mu \le \rho$ and $\tau(\rho) \ge r$.
- (2) A fuzzy set μ is called r-generalized fuzzy open (for short, r-gfo) if μ^c is r-gfc.

Theorem 3.2. Let (X, τ) be a fts and $r \in I_0$.

- (1) If μ_1 and μ_2 are r-gfc sets, then $\mu_1 \vee \mu_2$ is a r-gfc set.
- (2) If μ is a r-gfc set and $\mu < \lambda < cl(\mu, r)$, then λ is a r-gfc set.
- (3) If μ is a fuzzy r-closed set, then μ is a r-gfc set.
- (4) μ is a r-gfo set if and only if $\rho \leq int(\mu, r)$ whenever $\rho \leq \mu$ and $\tau(\rho^c) \geq r$.
- (5) If μ_1 and μ_2 are r-gfo sets, then $\mu_1 \wedge \mu_2$ is a r-gfo set.
- (6) If μ is a r-gfo set and $int(\mu, r) \leq \lambda \leq \mu$, then λ is a r-gfo set.
- (7) If μ is a fuzzy r-open set, then μ is a r-qfo set.

Proof. (1) Let μ_1 and μ_2 be r-gfc sets, $\mu_1 \vee \mu_2 \leq \rho$ and $\tau(\rho) \geq r$. Then $\mu_1 \leq \rho$ and $\mu_2 \leq \rho$. Since μ_1 and μ_2 are r-gfc sets, $cl(\mu_1, r) \leq \rho$ and $cl(\mu_2, r) \leq \rho$. By Theorem 2.2, $cl(\mu_1 \vee \mu_2, r) = cl(\mu_1, r) \vee cl(\mu_2, r) \leq \rho$. Thus $\mu_1 \vee \mu_2$ is a r-gfc set.

- (2) Let $\lambda \leq \rho$ and $\tau(\rho) \geq r$. Since $\mu \leq \lambda$, $\mu \leq \rho$. Since μ is a r-gfc set, $cl(\mu, r) \leq \rho$. Since $\lambda \leq cl(\mu, r)$, $cl(\lambda, r) \leq cl(cl(\mu, r), r) = cl(\mu, r) \leq \rho$. Hence λ is a r-gfc set.
 - (3) It follows directly from Definition 3.1.
 - (4) It follows easily from Definition 3.1 and Theorem 2.4.
 - (5) The proof is similar to (1).

(6) Since $int(\mu, r) \leq \lambda \leq \mu$, $\mu^c \leq \lambda^c \leq int(\mu, r)^c = cl(\mu^c, r)$. Since μ is a r-gfo set, μ^c is a r-gfo set. By (2), λ^c is a r-gfo set. Hence λ is a r-gfo set.

(7) It follows directly from Definition 3.1.

Example 3.3. The intersection of two r-gfc sets need not be a r-gfc set and the union of two r-gfo sets need not be a r-gfo set.

Let $X = \{x_1, x_2, x_3\}$ and μ_1, μ_2 and μ_3 be fuzzy sets of X defined as

$$\mu_1(x) = \begin{cases} 0 & \text{if } x = x_2, x_3, \\ 1 & \text{if } x = x_1, \end{cases}$$

$$\mu_2(x) = \begin{cases} 0 & \text{if } x = x_3, \\ 1 & \text{if } x = x_1, x_2, \end{cases}$$

$$\mu_3(x) = \begin{cases} 0 & \text{if } x = x_2 \\ 1 & \text{if } x = x_1, x_3. \end{cases}$$

Define $\tau: I^X \to I$ by

$$\tau(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{3}{4} & \text{if } \mu = \mu_{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_{2}, \\ \frac{1}{4} & \text{if } \mu = \mu_{3}, \\ 0 & \text{otherwise.} \end{cases}$$

Then τ is a fuzzy topology on X. It is easy to show that μ_2 and μ_3 are $\frac{3}{4}$ -gfc sets. $cl(\mu_2 \wedge \mu_3, \frac{3}{4}) = cl(\mu_1, \frac{3}{4}) = \tilde{1}, \mu_2 \wedge \mu_3 = \mu_1 \text{ and } \tau(\mu_1) = \frac{3}{4} \text{ but } cl(\mu_1 \wedge \mu_2, \frac{3}{4}) = \tilde{1} \not\leq \mu_1$. Hence $\mu_2 \wedge \mu_3$ is not a $\frac{3}{4}$ -gfc set.

By taking complement in the above example, we know that the union of two r-gfo sets need not be a r-gfo set.

Example 3.4. Every r-gfc set need not be a fuzzy r-closed set and every r-gfo set need not be a fuzzy r-open set.

Let $X = \{x_1, x_2, x_3\}$ and μ_1 and μ_2 be fuzzy sets of X defined as

$$\mu_1(x) = \begin{cases} 0 & \text{if } x = x_2, x_3, \\ 1 & \text{if } x = x_1, \end{cases}$$

$$\mu_2(x) = \begin{cases} 0 & \text{if } x = x_3, \\ 1 & \text{if } x = x_1, x_2. \end{cases}$$

Define $\tau: I^X \to I$ by

$$\tau(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{2}{3} & \text{if } \mu = \mu_{1}, \\ \frac{1}{3} & \text{if } \mu = \mu_{2}, \\ 0 & \text{otherwise.} \end{cases}$$

Then τ is a fuzzy topology on X. It is easy to show that μ_2 is a $\frac{2}{3}$ -gfc set. Since $\tau(\mu_2^c) = 0 \not\geq \frac{2}{3}$, μ_2 is not a fuzzy $\frac{2}{3}$ -closed set. Since μ_2 is a $\frac{2}{3}$ -gfc set, μ_2^c is a $\frac{2}{3}$ -gfo set. Since $\tau(\mu_2^c) = 0 \not\geq \frac{2}{3}$, μ_2^c is not a fuzzy $\frac{2}{3}$ -open set.

Definition 3.5. Let (X, τ) be a fts. For $\mu \in I^X$ and $r \in I_0$, the r-generalized fuzzy closure of μ is defined by

$$gcl(\mu, r) = \land \{ \rho \in I^X | \mu \le \rho, \rho \text{ is r-gfc} \}.$$

and the r-generalized fuzzy interior of μ is defined by

$$gint(\mu, r) = \bigvee \{ \rho \in I^X | \mu \ge \rho, \rho \text{ is r-gfo} \}.$$

Theorem 3.6. Let (X, τ) be a fts. Then for $\mu, \lambda \in I^X$ and $r, s \in I_0$,

- (1) $gcl(\tilde{0}, r) = \tilde{0}$,
- (2) $\mu \leq gcl(\mu, r)$,
- (3) $gcl(\mu, r) \leq gcl(\mu, s)$ if $r \leq s$,
- (4) $gcl(\mu, r) \leq gcl(\lambda, r)$ if $\mu \leq \lambda$,
- (5) $gcl(\mu \lor \lambda, r) = gcl(\mu, r) \lor gcl(\lambda, r),$
- (6) $gcl(gcl(\mu, r), r) = gcl(\mu, r),$
- (7) $gcl(\mu, r) \leq cl(\mu, r)$.

Proof. (1), (2),(3) and (4) are easily obtained from Definition 3.5.

(5) Since $\mu \leq \mu \vee \lambda$ and $\lambda \leq \mu \vee \lambda$, $gcl(\mu, r) \leq gcl(\mu \vee \lambda, r)$ and $gcl(\lambda, r) \leq gcl(\mu \vee \lambda, r)$ by (4). Hence $gcl(\mu, r) \vee gcl(\lambda, r) \leq gcl(\mu \vee \lambda, r)$.

Conversely, suppose that $gcl(\mu, r) \vee gcl(\lambda, r) \not\geq gcl(\mu \vee \lambda, r)$. Then there exist $x \in X$ and $t \in (0, 1)$ such that $gcl(\mu, r)(x) \vee gcl(\lambda, r)(x) < t < gcl(\mu \vee \lambda, r)(x)$. Since $gcl(\mu, r)(x) < t$ and $gcl(\lambda, r)(x) < t$, there exist r-gfc sets μ_1 and λ_1 with $\mu \leq \mu_1$ and $\lambda \leq \lambda_1$ such that $\mu_1(x) < t$ and $\lambda_1(x) < t$. Since $\mu \vee \lambda \leq \mu_1 \vee \lambda_1$ and $\mu_1 \vee \lambda_1$ is a r-gfc set by Theorem 3.2, $gcl(\mu \vee \lambda, r)(x) \leq (\mu_1 \vee \lambda_1)(x) < t$. This is a contradiction. Hence $gcl(\mu, r) \vee gcl(\lambda, r) \geq gcl(\mu \vee \lambda, r)$. Thus $gcl(\mu, r) \vee gcl(\lambda, r) = gcl(\mu \vee \lambda, r)$.

(6) $gcl(\mu, r) \leq gcl(gcl(\mu, r), r)$ by (2) and (4).

Suppose that $gcl(\mu, r) \not\geq gcl(gcl(\mu, r), r)$. Then there exist $x \in X$ and $t \in (0, 1)$ such that $gcl(\mu, r)(x) < t < gcl(gcl(\mu, r), r)(x)$. Since $gcl(\mu, r)(x) < t$, there exists a r-gfc set μ_1 with $\mu \leq \mu_1$ such that $gcl(\mu, r)(x) \leq \mu_1(x) < t$. Since $\mu \leq \mu_1$, $gcl(\mu, r) \leq \mu_1$ and $gcl(gcl(\mu, r), r) \leq \mu_1$ by (4). Hence

$$gcl(gcl(\mu, r), r)(x) \le \mu_1(x) < t.$$

This is a contraction. Hence $gcl(\mu, r) \geq gcl(gcl(\mu, r), r)$. Thus $gcl(gcl(\mu, r), r) = gcl(\mu, r)$.

(7) Since $cl(\mu, r)$ is a fuzzy r-closed set, $cl(\mu, r)$ is a r-gfc set by Theorem 3.2. Hence $gcl(\mu, r) \le cl(\mu, r)$ by Definition 3.5.

Theorem 3.7. Let (X, τ) be a fts. Then for $\mu, \lambda \in I^X$ and $r, s \in I_0$,

- (1) $gint(\tilde{1},r) = \tilde{1}$,
- (2) $gint(\mu, r) \leq \mu$,
- (3) $gint(\mu, r) \ge gint(\mu, s)$ if $r \le s$,
- (4) $gint(\mu, r) \leq gint(\lambda, r)$ if $\mu \leq \lambda$,
- (5) $gint(\mu \wedge \lambda, r) = gint(\mu, r) \wedge gint(\lambda, r)$,
- (6) $gint(gint(\mu, r), r) = gint(\mu, r),$
- (7) $int(\mu, r) \leq gint(\mu, r)$.

Proof. The proof is similar to Theorem 3.6.

Theorem 3.8. Let (X, τ) be a fts. Then for $\mu \in I^X$ and $r \in I_0$,

- (1) $gcl(\mu, r)^c = gint(\mu^c, r),$
- (2) $gint(\mu, r)^{c} = gcl(\mu^{c}, r)$.

Proof. (1) From Definition 3.5, we have

$$\begin{split} gcl(\mu,r)^c &= (\land \{\rho \in I^X | \ \mu \leq \rho, \ \rho \text{ is r-gfc} \})^c \\ &= \lor \{\rho^c \in I^X | \ \mu^c \geq \rho^c, \ \rho^c \text{ is r-gfo} \} \\ &= \lor \{\lambda \in I^X | \ \mu^c \geq \lambda, \ \lambda \text{ is r-gfo} \} \\ &= gint(\mu^c,r). \end{split}$$

(2) The proof is similar to (1).

Theorem 3.9. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$. If $f : (X, \tau) \to (Y, \sigma)$ is a fuzzy r-continuous and fuzzy r-closed map, then $f(\mu)$ is a r-gfc set of Y for each r-gfc set μ of X.

Proof. Let $f(\mu) \leq \rho$ and $\sigma(\rho) \geq r$. Then $\mu \leq f^{-1}(\rho)$. Since f is a fuzzy r-continuous map, $\tau(f^{-1}(\rho)) \geq r$. Since μ is a r-gfc set, $cl(\mu,r) \leq f^{-1}(\rho)$, i.e., $f(cl(\mu,r)) \leq \rho$. Since f is a fuzzy r-closed map and $cl(\mu,r)$ is a fuzzy r-closed set, $f(cl(\mu,r))$ is a fuzzy r-closed set. Hence $cl(f(\mu),r) \leq cl(f(cl(\mu,r)),r) = f(cl(\mu,r)) \leq \rho$. Thus $f(\mu)$ is a r-gfc set of Y.

Theorem 3.10. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$. If $f: (X, \tau) \to (Y, \sigma)$ is a bijective, fuzzy r-continuous and fuzzy r-open map, then $f(\mu)$ is a r-gfo set of Y for each r-gfo set μ of X.

Proof. Let $\rho \leq f(\mu)$ and $\sigma(\rho^c) \geq r$. Since f is injective, $f^{-1}(\rho) \leq f^{-1}(f(\mu)) = \mu$. Since f is a fuzzy r-continuous map and ρ is a fuzzy r-closed set, $f^{-1}(\rho)$ is a fuzzy r-closed set, i.e., $\tau((f^{-1}(\rho))^c) \geq r$. Since μ is a r-gfo set of X, $f^{-1}(\rho) \leq int(\mu, r)$. Since f is a fuzzy r-open map and $int(\mu, r)$ is a fuzzy r-open set, $f(int(\mu, r))$ is a fuzzy r-open set and so $f(int(\mu, r)) = int(f(int(\mu, r)), r)$. Since f is surjective, $\rho = f(f^{-1}(\rho)) \leq f(int(\mu, r)) = int(f(int(\mu, r)), r) \leq int(f(\mu), r)$. Hence $f(\mu)$ is a r-gfo set of Y.

4. R-GENERALIZED FUZZY CONTINUOUS MAPS

Definition 4.1. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$ and let $f: (X, \tau) \to (Y, \sigma)$ be a map.

- (1) f is called r-generalized fuzzy continuous (for short, r-gf-continuous) if $f^{-1}(\mu)$ is a r-gfc set of X for each fuzzy r-closed set μ of Y.
- (2) f is called strongly r-generalized fuzzy continuous (for short, strongly r-gf-continuous) if $f^{-1}(\mu)$ is a fuzzy r-closed set of X for each r-gfc set μ of Y.
- (3) f is called r-generalized fuzzy irresolute (for short, r-gf-irresolute) if $f^{-1}(\mu)$ is a r-gfc set of X for each r-gfc set μ of Y.
- (4) f is called r-generalized fuzzy open (for short, r-gf-open) if $f(\mu)$ is a r-gfo set of Y for each fuzzy r-open set μ of X.
- (5) f is called strongly r-generalized fuzzy open (for short, strongly r-gf-open) if $f(\mu)$ is a r-gfo set of Y for each r-gfo set μ of X.

Remark 4.2. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$ and let $f : (X, \tau) \to (Y, \sigma)$ be a map.

- (1) If f is fuzzy r-continuous, then f is r-gf-continuous.
- (2) If f is r-gf-irresolute, then f is r-gf-continuous.
- (3) If f is strongly r-gf-continuous, then f is r-gf-irresolute.
- (4) If f is fuzzy r-open, then f is r-gf-open.
- (5) If f is strongly r-gf-open, then f is r-gf-open.
- (6) If f is bijective, fuzzy r-continuous and fuzzy r-open, then f is strongly r-gf-open.

Example 4.3. The converse of Remark 4.2(1) is not true, i.e., every r-gf-continuous map need not be a fuzzy r-continuous map.

Let $X = \{x_1, x_2\}$ and μ_1 and μ_2 be fuzzy sets of X defined as

$$\mu_1(x) = \begin{cases} rac{1}{4} & ext{if } x = x_1, \\ rac{1}{2} & ext{if } x = x_2, \end{cases}$$

$$\mu_2(x) = \begin{cases} \frac{1}{3} & \text{if } x = x_1, \\ \frac{2}{3} & \text{if } x = x_2. \end{cases}$$

Define $\tau:I^X\to I$ and $\sigma:I^X\to I$ by

$$\tau(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0} \text{ or } \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_2, \\ 0 & \text{otherwise.} \end{cases}$$

$$\sigma(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0} \text{ or } \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_1, \\ 0 & \text{otherwise,} \end{cases}$$

then τ and σ are fuzzy topologies on X. It is easy to show that an identity map $id_X: (X,\tau) \to (X,\sigma)$ is $\frac{1}{2}$ -gf-continuous. But $id_X: (X,\tau) \to (X,\sigma)$ is not fuzzy $\frac{1}{2}$ -continuous because μ_1 is a fuzzy $\frac{1}{2}$ -open set in (X,σ) but $id_X^{-1}(\mu_1) = \mu_1$ is not a fuzzy $\frac{1}{2}$ -open set in (X,τ) .

Example 4.4. The converse of Remark 4.2(2) is not true, i.e., every r-gf-continuous map need not be a r-gf-irresolute map.

Let $X = \{x_1, x_2\}$ and μ_1 , μ_2 and μ_3 be fuzzy sets of X defined as

$$\mu_1(x) = \begin{cases} rac{1}{5} & ext{if } x = x_1, \\ rac{2}{5} & ext{if } x = x_2, \end{cases}$$

$$\mu_2(x) = \begin{cases} \frac{1}{3} & \text{if } x = x_1, \\ \frac{2}{3} & \text{if } x = x_2, \end{cases}$$

$$\mu_3(x) = \begin{cases} \frac{1}{4} & \text{if } x = x_1, \\ \frac{2}{3} & \text{if } x = x_2. \end{cases}$$

Define $\tau: I^X \to I$ and $\sigma: I^X \to I$ by

$$\tau(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0} \text{ or } \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_2, \\ 0 & \text{otherwise,} \end{cases}$$
$$\sigma(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0} \text{ or } \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_1, \\ 0 & \text{otherwise.} \end{cases}$$

then τ and σ are fuzzy topologies on X. It is easy to show that an identity map $id_X: (X,\tau) \to (X,\sigma)$ is $\frac{1}{2}$ -gf-continuous. Clearly, μ_3 is a $\frac{1}{2}$ -gfc set in (X,σ) . Since $\mu_3 \leq \mu_2$ and $\tau(\mu_2) = \frac{1}{2}$ but $cl(\mu_3, \frac{1}{2}) = \tilde{1} \not\leq \mu_2$, $id_X^{-1}(\mu_3) = \mu_3$ is not a $\frac{1}{2}$ -gfc set in (X,τ) . Hence $id_X: (X,\tau) \to (X,\sigma)$ is not $\frac{1}{2}$ -gf-irresolute.

Theorem 4.5. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$ and let $f : (X, \tau) \to (Y, \sigma)$ be a map. Then the following are equivalent:

- (1) f is r-gf-continuous.
- (2) $f^{-1}(\mu)$ is a r-gfo set of X for each fuzzy r-open set μ of Y.

Proof. It is straightforward.

Theorem 4.6. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$ and let $f: (X, \tau) \to (Y, \sigma)$ be a map. Then the following are equivalent:

- (1) f is strongly r-gf-continuous.
- (2) $f^{-1}(\mu)$ is a fuzzy r-open set of X for each r-gfo set μ of Y.

Proof. It is straightforward.

Theorem 4.7. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$. If $f : (X, \tau) \to (Y, \sigma)$ is a r-gf-continuous map, then $f(gcl(\mu, r)) \leq cl(f(\mu), r)$ for each $\mu \in I^X$.

Proof. For each $\mu \in I^X$, $cl(f(\mu), r)$ is a fuzzy r-closed set of Y. Since f is r-gf-continuous, $f^{-1}(cl(f(\mu), r))$ is a r-gfc set of X. $\mu \leq f^{-1}(cl(f(\mu), r))$ and so $gcl(\mu, r) \leq f^{-1}(cl(f(\mu), r))$ by Definition 3.5. Hence $f(gcl(\mu, r)) \leq cl(f(\mu), r)$. \square

Theorem 4.8. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$. Then $f : (X, \tau) \to (Y, \sigma)$ is a r-gf-irresolute map if and only if $f^{-1}(\mu)$ is a r-gfo set of X for each r-gfo set μ of Y.

 \Box

Proof. It is straightforward.

Theorem 4.9. Let (X,τ) , (Y,σ) and (Z,ν) be fts's and $r \in I_0$. If $f:(X,\tau) \to (Y,\sigma)$ is a r-gf-irresolute map and $g:(Y,\sigma) \to (Z,\nu)$ is a r-gf-continuous map, then $g \circ f:(X,\tau) \to (Z,\nu)$ is a r-gf-continuous map.

Proof. It is straightforward.

Theorem 4.10. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$. If $f: (X, \tau) \to (Y, \sigma)$ is a r-gf-irresolute map, then

- (1) $f(gcl(\mu,r)) \leq gcl(f(\mu),r)$ for each $\mu \in I^X$,
- (2) $gcl(f^{-1}(\mu), r) \leq f^{-1}(gcl(\mu, r))$ for each $\mu \in I^Y$,
- (3) $f^{-1}(gint(\mu,r)) \leq gint(f^{-1}(\mu),r)$ for each $\mu \in I^Y$.

Proof. (1) For each $\mu \in I^X$, we have

$$\begin{split} f^{-1}(gcl(f(\mu),r)) &= f^{-1}(\land \{\rho \in I^Y | \ f(\mu) \leq \rho, \ \rho \text{ is r-gfc}\}) \\ &\geq f^{-1}(\land \{\rho \in I^Y | \ \mu \leq f^{-1}(\rho), \ \rho \text{ is r-gfc}\}) \\ &\geq \land \{f^{-1}(\rho) \in I^X | \ \mu \leq f^{-1}(\rho), \ f^{-1}(\rho) \text{ is r-gfc}\}) \\ &\geq \land \{\lambda \in I^X | \ \mu \leq \lambda, \ \lambda \text{ is r-gfc}\} \\ &= gcl(\mu,r). \end{split}$$

Hence $f(qcl(\mu, r)) < qcl(f(\mu), r)$.

(2) For each $\mu \in I^Y$, we have

$$\begin{split} f^{-1}(gcl(\mu,r)) &= f^{-1}(\land \{\rho \in I^Y | \ \mu \leq \rho, \ \rho \text{ is r-gfc}\}) \\ &\geq f^{-1}(\land \{\rho \in I^Y | \ f^{-1}(\mu) \leq f^{-1}(\rho), \ \rho \text{ is r-gfc}\}) \\ &\geq \land \{f^{-1}(\rho) \in I^X | \ f^{-1}(\mu) \leq f^{-1}(\rho), \ f^{-1}(\rho) \text{ is r-gfc}\}) \\ &\geq \land \{\lambda \in I^X | \ f^{-1}(\mu) \leq \lambda, \ \lambda \text{ is r-gfc}\} \\ &= gcl(f^{-1}(\mu), r). \end{split}$$

Hence $gcl(f^{-1}(\mu), r) \le f^{-1}(gcl(\mu, r)).$

(3) For each $\mu \in I^Y$, we have

$$\begin{split} f^{-1}(gint(\mu,r)) &= f^{-1}(\vee \{\rho \in I^Y | \ \rho \leq \mu, \ \rho \text{ is r-gfo}\}) \\ &\leq f^{-1}(\vee \{\rho \in I^Y | \ f^{-1}(\rho) \leq f^{-1}(\mu), \ \rho \text{ is r-gfo}\}) \\ &\leq \vee \{f^{-1}(\rho) \in I^X | \ f^{-1}(\rho) \leq f^{-1}(\mu), \ f^{-1}(\rho) \text{ is r-gfo}\}) \end{split}$$

$$\leq \vee \{\lambda \in I^X | \lambda \leq f^{-1}(\mu), \lambda \text{ is r-gfo} \}$$
$$= gint(f^{-1}(\mu), r).$$

Hence $f^{-1}(gint(\mu, r)) \leq gint(f^{-1}(\mu), r)$.

Theorem 4.11. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$. If $f : (X, \tau) \to (Y, \sigma)$ is a strongly r-gf-open map, then $f(gint(\mu, r)) \leq gint(f(\mu), r)$ for each $\mu \in I^X$.

Proof. For each $\mu \in I^X$, we have

$$\begin{split} f(gint(\mu,r)) &= f(\vee \{\rho \in I^X | \ \rho \leq \mu, \ \rho \text{ is r-gfo}\}) \\ &\leq f(\vee \{\rho \in I^X | \ f(\rho) \leq f(\mu), \ \rho \text{ is r-gfo}\}) \\ &\leq \vee \{f(\rho) \in I^Y | \ f(\rho) \leq f(\mu), \ f(\rho) \text{ is r-gfo}\}) \\ &\leq \vee \{\lambda \in I^Y | \ \lambda \leq f(\mu), \ \lambda \text{ is r-gfo}\} \\ &= gint(f(\mu),r). \end{split}$$

Hence $f(gint(\mu, r)) \leq gint(f(\mu), r)$.

5. SEVERAL TYPES OF R-GENERALIZED FUZZY COMPACTNESS

A collection $\{\mu_i | i \in \Gamma\}$ of fuzzy r-open sets of X is called a fuzzy r-open cover of X if $\forall_{i \in \Gamma} \mu_i = \tilde{1}$.

A collection $\{\mu_i | i \in \Gamma\}$ of r-gfo sets of X is called a r-gfo cover of X if $\forall_{i \in \Gamma} \mu_i = \tilde{1}$.

Definition 5.1. Let (X, τ) be a fts and $r \in I_0$.

- (1) (X, τ) is called fuzzy r-compact if for every fuzzy r-open cover $\{\mu_i | i \in \Gamma\}$ of X, there exists a finite subset Γ_0 of Γ such that $\forall_{i \in \Gamma_0} \mu_i = \tilde{1}$.
- (2) (X, τ) is called nearly fuzzy r-compact if for every fuzzy r-open cover $\{\mu_i | i \in \Gamma\}$ of X, there exists a finite subset Γ_0 of Γ such that $\forall_{i \in \Gamma_0} int(cl(\mu_i, r), r) = \tilde{1}$.
- (3) (X, τ) is called almost fuzzy r-compact if for every fuzzy r-open cover $\{\mu_i | i \in \Gamma\}$ of X, there exists a finite subset Γ_0 of Γ such that $\bigvee_{i \in \Gamma_0} cl(\mu_i, r) = \tilde{1}$.
- (4) (X, τ) is called strongly nearly fuzzy r-compact if for every fuzzy r-open cover $\{\mu_i | i \in \Gamma\}$ of X, there exists a finite subset Γ_0 of Γ such that $\bigvee_{i \in \Gamma_0} gint(gcl(\mu_i, r), r) = \tilde{1}$.
- (5) (X, τ) is called *strongly almost fuzzy r-compact* if for every fuzzy r-open cover $\{\mu_i | i \in \Gamma\}$ of X, there exists a finite subset Γ_0 of Γ such that $\bigvee_{i \in \Gamma_0} gcl(\mu_i, r) = \tilde{1}$.

(6) (X, τ) is called fuzzy r-regular if each fuzzy r-open set μ of X can be written as $\mu = \forall \{ \rho \in I^X | \tau(\rho) \ge \tau(\mu), \ cl(\rho, r) \le \mu \}.$

Definition 5.2. Let (X, τ) be a fts and $r \in I_0$.

- (1) (X,τ) is called r-generalized fuzzy compact (for short, r-gf-compact) if for every r-gfo cover $\{\mu_i|\ i\in\Gamma\}$ of X, there exists a finite subset Γ_0 of Γ such that $\forall_{i \in \Gamma_0} \mu_i = \tilde{1}$.
- (2) (X,τ) is called nearly r-generalized fuzzy compact (for short, nearly r-gfcompact) if for every r-gfo cover $\{\mu_i | i \in \Gamma\}$ of X, there exists a finite subset Γ_0 of Γ such that $\forall_{i \in \Gamma_0} gint(gcl(\mu_i, r), r) = \tilde{1}$.
- (3) (X, τ) is called almost r-generalized fuzzy compact (for short, almost r-gfcompact) if for every r-gfo cover $\{\mu_i|\ i\in\Gamma\}$ of X, there exists a finite subset Γ_0 of Γ such that $\forall_{i \in \Gamma_0} gcl(\mu_i, r) = \tilde{1}$.
- (4) (X,τ) is called r-generalized fuzzy regular (for short, r-gf-regular) if each r-gfo set μ of X can be written as $\mu = \bigvee \{ \rho \in I^X | \rho \text{ is r-gfo}, gcl(\rho, r) \leq \mu \}.$

Theorem 5.3. Let (X, τ) be a fts and $r \in I_0$. Then

Proof. It is straightforward.

- (1) If (X, τ) is r-gf-compact, then (X, τ) is fuzzy r-compact.
- (2) If (X,τ) is almost r-gf-compact, then (X,τ) is strongly almost fuzzy rcompact.
- (3) If (X,τ) is strongly almost fuzzy r-compact, then (X,τ) is almost fuzzy rcompact.

(4) If (X, τ) is nearly r-gf-compact, then (X, τ) is strongly nearly fuzz	yr- $compact$.
Proof. It is straightforward.	
Theorem 5.4. Let (X, τ) be a fts and $r \in I_0$. Then (X, τ) is r-gf-comparis nearly r-gf-compact $\Rightarrow (X, \tau)$ is almost r-gf-compact.	$act \Rightarrow (X, \tau)$
Proof. It is straightforward.	
Theorem 5.5. Let (X, τ) be a fts and $r \in I_0$. Then (X, τ) is fuzzy $r(X, \tau)$ is nearly fuzzy r -compact $\Rightarrow (X, \tau)$ is almost fuzzy r -compact.	$-compact \Rightarrow$

Theorem 5.6. Let (X,τ) be a fts and $r \in I_0$. Then (X,τ) is fuzzy r-compact \Rightarrow (X, τ) is strongly nearly fuzzy r-compact $\Rightarrow (X, \tau)$ is strongly almost fuzzy r-compact.

Proof. It is straightforward.

Theorem 5.7. Let (X, τ) be a fts and $r \in I_0$. If (X, τ) is almost r-gf-compact and r-gf-regular, then (X, τ) is r-gf-compact.

Proof. Let $\{\mu_i | i \in \Gamma\}$ be a r-gfo cover of X. Since (X, τ) is r-gf-regular, $\mu_i = \bigvee_{j_i \in J_i} \{\rho_{j_i} \in I^X | \rho_{j_i} \text{ is r-gfo}, \ gcl(\rho_{j_i}, r) \leq \mu_i\}$ for each $i \in \Gamma$. Since $\bigvee_{i \in \Gamma} \mu_i = \bigvee_{i \in \Gamma} (\bigvee_{j_i \in J_i} \rho_{j_i}) = \tilde{1}$ and (X, τ) is almost r-gf-compact, there exists a finite subfamily $\{\rho_j \in I^X | \rho_j \text{ is r-gfo}, \ j \in J\}$ such that $\bigvee_{j \in J} gcl(\rho_j, r) = \tilde{1}$. Since for each $j \in J$ there exists $i \in \Gamma$ such that $gcl(\rho_j, r) \leq \mu_i$, we have $\bigvee_{i \in \Gamma_0} \mu_i = \tilde{1}$, where Γ_0 is a finite subset of Γ. Hence (X, τ) is r-gf-compact.

Theorem 5.8. Let (X, τ) be a fts and $r \in I_0$. If (X, τ) is almost fuzzy r-compact and fuzzy r-regular, then (X, τ) is fuzzy r-compact.

Proof. The proof is similar to Theorem 5.7.

Theorem 5.9. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$ and let $f : (X, \tau) \to (Y, \sigma)$ be a surjective r-gf-continuous map. If (X, τ) is r-gf-compact, then (Y, σ) is fuzzy r-compact.

Proof. It is straightforward.

Theorem 5.10. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$ and let $f : (X, \tau) \to (Y, \sigma)$ be a surjective strongly r-gf-continuous map. If (X, τ) is fuzzy r-compact, then (Y, σ) is r-gf-compact.

Proof. Let $\{\mu_i | i \in \Gamma\}$ be a r-gfo cover of Y. Since f is strongly r-gf-continuous, by Theorem 4.6 $\{f^{-1}(\mu_i) | i \in \Gamma\}$ is a fuzzy r-open cover of X. Since (X, τ) is fuzzy r-compact, there exists a finite subset Γ_0 of Γ such that $\forall_{i \in \Gamma_0} f^{-1}(\mu_i) = \tilde{1}_X$. Since f is surjective, $\tilde{1}_Y = f(\tilde{1}_X) = f(\forall_{i \in \Gamma_0} f^{-1}(\mu_i)) = \forall_{i \in \Gamma_0} f(f^{-1}(\mu_i)) = \forall_{i \in \Gamma_0} \mu_i$, i.e., $\forall_{i \in \Gamma_0} \mu_i = \tilde{1}_Y$. Hence (Y, σ) is r-gf-compact.

Theorem 5.11. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$ and let $f : (X, \tau) \to (Y, \sigma)$ be a surjective r-gf-continuous map. If (X, τ) is almost r-gf-compact, then (Y, σ) is almost fuzzy r-compact.

Proof. Let $\{\mu_i | i \in \Gamma\}$ be a fuzzy r-open cover of Y. Since f is r-gf-continuous, by Theorem 4.5 $\{f^{-1}(\mu_i) | i \in \Gamma\}$ is a r-gfo cover of X. Since (X, τ) is almost r-gf-compact, there exists a finite subset Γ_0 of Γ such that $\forall_{i \in \Gamma_0} gcl(f^{-1}(\mu_i), r) = \tilde{1}_X$. Since f is surjective,

$$\tilde{1}_Y = f(\tilde{1}_X) = f(\vee_{i \in \Gamma_0} gcl(f^{-1}(\mu_i), r)) = \vee_{i \in \Gamma_0} f(gcl(f^{-1}(\mu_i), r)).$$
 Since f is r-gf-continuous, by Theorem 4.7 $f(gcl(f^{-1}(\mu_i), r)) \leq cl(f(f^{-1}(\mu_i)), r).$ Hence $\tilde{1}_Y = \vee_{i \in \Gamma_0} f(gcl(f^{-1}(\mu_i), r)) \leq \vee_{i \in \Gamma_0} cl(f(f^{-1}(\mu_i)), r) = \vee_{i \in \Gamma_0} cl(\mu_i, r).$ Thus $\vee_{i \in \Gamma_0} cl(\mu_i, r) = \tilde{1}_Y.$ Hence (Y, σ) is almost fuzzy r-compact.

Theorem 5.12. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$ and let $f : (X, \tau) \to (Y, \sigma)$ be a surjective fuzzy r-continuous map. If (X, τ) is strongly almost fuzzy r-compact, then (Y, σ) is almost fuzzy r-compact.

Proof. The proof is similar to Theorem 5.11.

Theorem 5.13. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$ and let $f: (X, \tau) \to (Y, \sigma)$ be a surjective r-gf-irresolute map. Then

- (1) If (X, τ) is r-gf-compact, then (Y, σ) is r-gf-compact.
- (2) If (X, τ) is almost r-gf-compact, then (Y, σ) is almost r-gf-compact.

Proof. (1) It is straightforward.

(2) Let $\{\mu_i|\ i\in\Gamma\}$ be a r-gfo cover of Y. Since f is r-gf-irresolute, by Theorem 4.8 $\{f^{-1}(\mu_i)|\ i\in\Gamma\}$ is a r-gfo cover of X. Since (X,τ) is almost r-gf-compact, there exists a finite subset Γ_0 of Γ such that $\bigvee_{i\in\Gamma_0}gcl(f^{-1}(\mu_i),r)=\tilde{1}_X$. Since f is surjective, $\tilde{1}_Y=f(\tilde{1}_X)=f(\bigvee_{i\in\Gamma_0}gcl(f^{-1}(\mu_i),r))=\bigvee_{i\in\Gamma_0}f(gcl(f^{-1}(\mu_i),r))$. Since f is r-gf-irresolute, by Theorem 4.10 $f(gcl(f^{-1}(\mu_i),r))\leq gcl(f(f^{-1}(\mu_i)),r)$. Hence $\tilde{1}_Y=\bigvee_{i\in\Gamma_0}f(gcl(f^{-1}(\mu_i),r))\leq\bigvee_{i\in\Gamma_0}gcl(f(f^{-1}(\mu_i),r))=\bigvee_{i\in\Gamma_0}gcl(\mu_i,r)$. Thus $\bigvee_{i\in\Gamma_0}gcl(\mu_i,r)=\tilde{1}_Y$. Hence (Y,σ) is almost r-gf-compact.

Theorem 5.14. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$ and let $f: (X, \tau) \to (Y, \sigma)$ be a surjective, fuzzy r-continuous and r-gf-irresolute map. If (X, τ) is strongly almost fuzzy r-compact, then (Y, σ) is strongly almost fuzzy r-compact.

Proof. The proof is similar to Theorem 5.13.

Theorem 5.15. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$ and let $f : (X, \tau) \to (Y, \sigma)$ be a surjective, r-gf-irresolute and strongly r-gf-open map. If (X, τ) is nearly r-gf-compact, then (Y, σ) is nearly r-gf-compact.

Proof. Let $\{\mu_i|\ i\in\Gamma\}$ be a r-gfo cover of Y. Since f is r-gf-irresolute, by Theorem 4.8 $\{f^{-1}(\mu_i)|\ i\in\Gamma\}$ is a r-gfo cover of X. Since (X,τ) is nearly r-gf-compact, there exists a finite subset Γ_0 of Γ such that $\bigvee_{i\in\Gamma_0}gint(gcl(f^{-1}(\mu_i),r),r)=\tilde{1}_X$. Since f is surjective, $\tilde{1}_Y=f(\tilde{1}_X)=f(\bigvee_{i\in\Gamma_0}gint(gcl(f^{-1}(\mu_i),r),r))=\bigvee_{i\in\Gamma_0}f(gint(gcl(f^{-1}(\mu_i),r),r))$. Since f is strongly r-gf-open, by Theorem 4.11 $f(gint(gcl(f^{-1}(\mu_i),r),r))\leq gint(f(gcl(f^{-1}(\mu_i),r)),r)$ for each $i\in\Gamma$. Since f is r-gf-irresolute, by Theorem 4.10 $f(gcl(f^{-1}(\mu_i),r))\leq gcl(f(f^{-1}(\mu_i)),r)$. Hence we have

$$\begin{split} \tilde{1}_Y &= \bigvee_{i \in \Gamma_0} f(gint(gcl(f^{-1}(\mu_i), r), r)) \\ &\leq \bigvee_{i \in \Gamma_0} gint(f(gcl(f^{-1}(\mu_i), r)), r) \\ &\leq \bigvee_{i \in \Gamma_0} gint(gcl(f(f^{-1}(\mu_i)), r), r) \\ &= \bigvee_{i \in \Gamma_0} gint(gcl(\mu_i, r), r). \end{split}$$

Thus $\forall_{i \in \Gamma_0} gint(gcl(\mu_i, r), r) = \tilde{1}_Y$. Hence (Y, σ) is nearly r-gf-compact.

We obtain the following corollary from Theorem 5.15 and Remark 4.2.

Corollary 5.16. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$ and let $f: (X, \tau) \to (Y, \sigma)$ be a bijective, fuzzy r-continuous, fuzzy r-open and r-gf-irresolute map. If (X, τ) is nearly r-gf-compact, then (Y, σ) is nearly r-gf-compact.

Theorem 5.17. Let (X, τ) and (Y, σ) be fts's, $r \in I_0$ and let $f : (X, \tau) \to (Y, \sigma)$ be a surjective, fuzzy r-continuous, r-gf-irresolute and strongly r-gf-open map. If (X, τ) is strongly nearly fuzzy r-compact, then (Y, σ) is strongly nearly fuzzy r-compact.

Proof. The proof is similar to Theorem 5.15.

REFERENCES

- 1. R. Badard: Smooth axiomatics. First IFSA Congress, Palma de Mallorca (July 1986).
- 2. J. Balasubramanian & P. Sundaram: On some generalizations of fuzzy continuous functions. Fuzzy Sets and Systems 86 (1997), 93-100.
- 3. C. L. Chang: Fuzzy topological spaces. J. Math. Anal. Appl. 24 (1968), 182-190.

- 4. K. C. Chattopadhyay & S. K. Samanta: Fuzzy topology: fuzzy closure operator, fuzzy compactness and fuzzy connectedness. Fuzzy Sets and Systems 54 (1993), 207-212.
- 5. M. Demirci: On several types of compactness in smooth topological spaces. Fuzzy Sets and Systems 90 (1997), 83-88.
- 6. M. K. El Gayyar, E. E. Kerre & A. A. Ramadan: Almost compactness and near compactness in smooth topological spaces. Fuzzy Sets and Systems 62 (1994), 193-202.
- 7. S. J. Lee & E. P. Lee: Fuzzy r-continuous and fuzzy r-semicontinuous maps. Int. J. Math. Math. Sci. 27 (2001), no. 1, 53-63.
- 8. N. Levine: Generalized closed sets in topological spaces. Rend. Circ. Mat. Palermo 19 (1970), 89-96.
- 9. A. A. Ramadan: Smooth topological spaces. Fuzzy Sets and Systems 48 (1992), 371-375.

 $^{1}\mathrm{Department}$ of Mathematics, Kangwon National University, Chuncheon, Gangwon 200-701, Korea

Email address: ckpark@kangwon.ac.kr

 $^2\mathrm{Department}$ of Mathematics, Kangwon National University, Chuncheon, Gangwon 200-701, Korea

Email address: wkmin@kangwon.ac.kr