DOI QR코드

DOI QR Code

Substituent Effects on the Gas-Phase Pyrolyses of 2-Substituted Ethyl N,N-Dialkylcarbamates: A Theoretical Study

  • Published : 2007.06.20

Abstract

The R- and Z-substituent effects for the gas-phase thermal decompositions of carbamates, R2NC(=O)- OCH2CH2Z, have been investigated theoretically at B3LYP level with 6-31G(d) and 6-31++G(d,p) basis sets. Both the Z- and R-substituent effects on reactivity (ΔH≠) were well consistent with experimental results, although the R-substituent effect was underestimated theoretically. No correlations were found between activation enthalpies and reaction enthalpies. The substituent effects on reactivity seemed to be complicated at a glance, but were understandable by concurrent electronic and steric factors. Variations of bond lengths at TS structures were well correlated with the Taft's σ* values and the TS structures became tighter as the Zsubstituent became a stronger electron-acceptor (δσ* > 0). However the effects of R-substituents on the TS structures were much smaller when compared to those of Z-substituents.

Keywords

References

  1. Chuchani, G.; Marquez, E.; Herize, A.; Domínguez, R. M.; Tosta, M.; Brusco, D. J. Phys. Org. Chem. 2003, 16, 839 https://doi.org/10.1002/poc.665
  2. Chuchani, G.; Nunñez, O.; Domínguez, R. M.; Rotinov, A.; Herize, A. J. Phys. Org. Chem. 2001, 16, 40 https://doi.org/10.1002/poc.567
  3. Herize, A.; Domínguez, R. M.; Rotinov, A.; Nunñez, O.; Chuchani, G. J. Phys. Org. Chem. 1999, 12, 201 https://doi.org/10.1002/(SICI)1099-1395(199903)12:3<201::AID-POC112>3.0.CO;2-G
  4. Daly, N. J.; Ziolkowsky, F. J. Chem. Soc., Chem. Commun. 1972, 911
  5. Daly, N. J.; Ziolkowsky, F. Aust. J. Chem. 1971, 24, 2451
  6. Kim, C. K.; Kim, D. J.; Lee, H. W.; Lee, B.-S.; Kim, C. K. J. Comp. Chem. 2007, 28, 625 https://doi.org/10.1002/jcc.20600
  7. Taylor, R. In The Chemistry of Functional Groups. Supplementary Volume B, Acid Derivatives; Patai, S., Ed.; Wiley: London, 1979; Chap
  8. Halbrook, K. A. In The Chemistry of Acid Derivatives, Vapor and Gas-phase Reactions of Carboxylic Acids and Their Derivatives; Patai, S., Ed.; Wiley: Chichester, 1992; Chapt. 12, Volume 2
  9. Smith, G. G.; Voorkess, K. I.; Kelly, F. M. J. Chem. Soc., Chem. Commun. 1971, 789
  10. Gordon, A. S.; Norris, W. P. J. Phys. Chem. 1965, 69, 3013 https://doi.org/10.1021/j100893a032
  11. Kwart, H.; Slutsky, J. J. Chem. Soc., Chem. Commun. 1972, 552
  12. Daly, N. J.; Ziolkowski, F. Aust. J. Chem. 1972, 25, 1453 https://doi.org/10.1071/CH9721453
  13. Chuchani, G.; Mishima, M.; Notario, R.; Abboud, J. L. In Advances in Quantitative Structure-Property Relationship. Structural Effect on Gas Phase Reactivities; Charton, M.; Charton, B., Eds.; JAI Press: Stamford, 1999; Vol. 2, p 83 and references cited therein
  14. Hancock, C. K.; Meyers, E. A.; Yager, B. J. J. Am. Chem. Soc. 1961, 83, 4211 https://doi.org/10.1021/ja01481a027
  15. Chuchani, G.; Nunñez, O.; Marcano, N.; Napolitano, S.; Rodriguez, H.; Domínguez, M.; Ascanio, J.; Rotinov, A.; Domínguez, R. M.; Herize, A. J. Phys. Org. Chem. 2001, 14, 146 https://doi.org/10.1002/poc.341
  16. Taft, R. W. Steric Effects in Organic Chemistry; Newman, M., Ed.; Wiley: New York, 1956; Chapter 13
  17. Luiggi, M.; Domínguez, R. M.; Rotinov, A.; Herize, A.; Cordova, M.; Chuchani, G. Int. J. Chem. Kinetics 2001, 33, 67
  18. Brusco, Y.; Domínguez, R. M.; Rotinov, A.; Herize, A.; Cordova, M.; Chuchani, G. J. Phys. Org. Chem. 2002, 15, 796 https://doi.org/10.1002/poc.525
  19. Xue, Y.; Lee, K. A.; Kim, C. K. Bull. Korean Chem. Soc. 2003, 24, 853 https://doi.org/10.5012/bkcs.2003.24.6.853
  20. Lee, I.; Li, H. G.; Kim, C. K.; Lee, B.-S.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2003, 24, 583 https://doi.org/10.1007/s11814-007-0006-x
  21. Kim, C. K.; S. H. Yoon; J. Won; Kim, C. K. Bull. Korean Chem. Soc. 2006, 27, 1219 https://doi.org/10.5012/bkcs.2006.27.8.1219
  22. Schlegel, H. B. In New Theoretical Concepts for Understanding Organic Reactions; Bertran, J.; Csizmadia, I. G., Eds.; Kluwer: Dordrecht, 1989; pp 33-53
  23. Foresman, J. B.; Frisch, Æ. Exploring Chemistry with Electronic Structure Method, 2nd Ed.; Gaussian Inc.: Pittsburgh, 1996; p 69
  24. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.6; Gaussian, Inc.: Pittsburgh, PA, 1998
  25. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899 https://doi.org/10.1021/cr00088a005
  26. Carpenter, J. E.; Weinhold, F. J. Mol. Struct. (THEOCHEM) 1988, 169, 41 https://doi.org/10.1016/0166-1280(88)80248-3
  27. Hansch, C.; Leo, A.; Taft, R. Chem. Rev. 1991, 91, 165 https://doi.org/10.1021/cr00002a004
  28. Han, I. S.; Kim, C. K.; Kim, C.-K.; Lee, H. W.; Lee, I. J. Phys. Chem. A 2002, 106, 2554
  29. Kim, C. K.; Han, I. S.; Ryu, W. S.; Lee, H. W.; Lee, B.-S.; Kim, C. K. J. Phys. Chem. A 2006, 110, 2500 https://doi.org/10.1021/jp055777z
  30. Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Capenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. NBO 5.0; Theoretical Chemistry Institute, University of Wisconsin: Madison, 2001

Cited by

  1. Thermoanalytical behaviour of carbaryl and its copper(II) and zinc(II) complexes vol.107, pp.2, 2012, https://doi.org/10.1007/s10973-011-1666-7
  2. Experimental investigations of thermal stability of some morpholinecarbamic acid complexes of copper(II) and zinc(II) vol.127, pp.2, 2017, https://doi.org/10.1007/s10973-016-5805-z
  3. Control of TiO[sub 2] Growth Conditions Using Tetrahydropyran Protected Self-Assembled Monolayer and Alkyl Isocyanate vol.157, pp.4, 2010, https://doi.org/10.1149/1.3306067
  4. Aminolysis of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl Benzoates: Effect of ortho-Nitro Group on Reactivity and Mechanism vol.29, pp.10, 2007, https://doi.org/10.5012/bkcs.2008.29.10.1915
  5. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  6. Aminolyses of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl 2-Furoates: Effect of ortho-Substituent on Reactivity and Mechanism vol.29, pp.4, 2007, https://doi.org/10.5012/bkcs.2008.29.4.772
  7. Aminolysis of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl 2-Thiophenecarboxylates: Effect of ortho-Nitro Group on Reactivity and Mechanism vol.29, pp.8, 2008, https://doi.org/10.5012/bkcs.2008.29.8.1459
  8. Theoretical studies on the gas-phase pyrolysis of 2-trimethylsilylethanol vol.941, pp.1, 2007, https://doi.org/10.1016/j.theochem.2009.11.017