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Abstract,

We improve Wilehemski-Fixmann theory for intrachain reaction dynamics of a polymer chain by 1aking into

account excluded volume effects between reactive groups in the polymerchain. An approximate analytic expression for
the intra~chain reaction dynamics is obtained for Gaussian chain model and compared 10 Brownian dynamics simulation
results. The results of the present theory are in a better agreement to Brownian dymamics simulation results than those

calculated by previously reported theories.
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INTRODUCTION

A number of complex dynamical processes in
nature are stochastic processes, and it is often of our
concern to know the tune when a particular event
occurs for the tirst time in a sequence ot a stochas-
tic process. In the present paper we investigate the
first reaction time between highly reactive units in a
chain polymer undergoing Brownian motion, which
has been investigated tor long times, but the exact
analytic solution for this problem has not been vet
found even for the simplest case where the chain
polymmer is a Gaussian chain such as Rouse chain
and the reactive units complete the reaction on their
tirst encounter at a predetined contact distance, ©.

Recenlty, solokov reported a numerical approach
that can providethe first passage time (FPT) distri-

bution between two ends of Rouse chain with a
given initial separation by solving the integral equa-
tion satistied by the FPT distribution. ITowever, it 1s
notteasible to make a straightforward application of
the latter method to the frequenily encountered situ-
ation where the mitial end-to-end (ETE} distance ot
a chain polymer is distributedaccording to the Bolt-
zmann distribution. Up to now, analytic theories
that can handle the latter situation are the Wilemski
and Fixman theory (WF theory) and the Szabo,
Schulten, and Schulten theory (SSS theory). Pastor,
Zwanzig and Szabo (PZS) made a comparison between
predictions of these theories and results of Brown-
ian dynamics simulations for the ETE mean ftirst
passage tume (MFPT) of Rouse chain. Theyfound
that the WF theory gives a better agreement to the
BD simulation results than the $S§S theory in gen-
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eral. This is because the non-Markov ETE dynam-
ics of Rouse chain is better approximated in the WF
theory.

However, in the extreme case where the number
of beads comprising Rouse chain is only two or
three, the ETE dynamics ot the Rouse chain becomes
a Markov process and results of the SSS theory are
exact whereas those of the WF theory is not. What
is mussing in the WF theory but taken mto account
in the S§8S theory is the excluded volume etfects
between the ends of the Rouse chain. In the pres-
ence of the reaction at a predetined ETE distance,
. the chain polymer with the ETE distance smaller
than & does not exist for the whole reaction time,
which should be taken into account both in the ini-
tial distribution and in the evolution dynamics of
the Rouse chain.

In the present contribution, we enhance the WF
theory tor an intrachain reaction in taking into account
the absorbing boundary between reactive beads.
For the short Rouse chain composed of two or three
beads, the result of the present theory is exact as
that of the SSS theory. For other cases, results of the
present theory are in a better agreement with the
accurate Brownian dynamics simulation results than
those of the previous WF or the SSS theories.

MODEL

In the present paper we will consider the first pas-
sage time between the ends in the Rouse chain
composed of N+1 beads sequentially connected by
N harmenic springs. I[Fr{j=0,1.2....N) denotes the
position vector of the j-th bead, the potential of
mean force U7 of the Rouse chain is given by

apl .
v=L 3 -r (1
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where B and #° denote the thermal energy and the
equilibrium mean squared length of a single bond
of the Rouse chain, respectively, Note that, in the
Rouse chain model, neither the excluded volume
interactions between beads nor the chain stifthess
existsso that the beads composing Rouse chain can
pass through each other and relative angles between
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bonds can change freeof any change in the potential
ot mean force. For Rouse Chain model the hydro-
dynamic interactions between beads are absent
either, so that the stochastic torce exerted on a bead
in the Rouse chain responsible for the Brownian
motion of the bead is not correlated to that exerted
on another bead in the chain. For the Rouse chain
model, it 1s established that the probability density
w4 that the A+1 beads are located at ¥'™'=
¥y ¥,k ) at time 7 satisties the following Fokker-
Planck equation,
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where D, is the diffusion constant of a single bead.
For the purpose of comparison, we adopt the
reaction model considered by PZS in their Brown-
1an dynamics simulation, in which the Rouse chain
with its end-to-end separation R greater than a pre-
defined distance ¢ 1s initially distributed according
to the Boltzmann distribution and afterwards a fast
irreversible reaction oceurs when distance R between
the ends of the Rouse chain becomes & for the first time.
Although the above-mentioned model is very
simple, the mathematical method developed in the
present theory is straightforwardly applicable to
imvestigation of the first passage time between an
arbitrary pair of beads in a more complex Gaussian
chain model with the excluded volume interactions
between non-reactive beads, the ¢hain stiftivess, and
the hydrodynamic interactions taken nto account.

THEORY

The FPT probability £ (s, 1|R,, 0)dr that the Rouse
chain composed of A+ beads with the initial end-
to-end separation being R, has its ETE separation at
o for the first time In time interval (s + ) satis-
fies the following integral equation:™

Glo R 0)= JF(G,!'|R0,O)G(G,I1G, ";R,, 0)df
o

3

Ilere Gi(s,1R,,0) 1s the conditional probability
that the value of the ETE distance. R. of Rouse
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chain is ¢ at time ¢ in the absence ot any reaction,
provided that the initial value of R is R, and
G(o./0.7 R, 0} is the multi-time conditional prob-
ability that the value of R is & at time 7 in the absence
of any reaction, provided that the value of R was at
o at an earlier time 7 and was initially R, For a
Gaussian chain such as Rouse chain, the analytic
expressions for G(R,4R;,0) and G(R,4R,#;R;0)

are available in case of tree boundary, which will be
denoted by G')(R,r]Ro,l)} and G(’(R,t|R,f';Rg,0) .4
By solving Eq. (3) numerically with the latter con-
ditional probabilities, one can calculate F(c,4R;)

ot the Rouse chain with a given initial end-to-end
separation R,.4 However, it is not easy to apply this
method to calculate the FPT distribution Fie,eq)

between the ends of the Rouse chain initially pre-
pared in thermal equilibrium state, which is often of
interest in intrachain fluorescence quenching or
energy transter experiments of an ensemble ot chain
polymers. To calculate F(o,4eq) by this method, one
has to solve Eq. (3) numerically for every value of
R, to obtain the average ot F(s,4R,) over the mi-
tial equilibrium distribution PL{RO) of R,, which 1s
not teasible.

One ot the sumple approximate methods to obtain
the analytic expression for F(r,#eg) is to assume
the encounter dynamics of the ends of Rouse chain
is a Markov process, i.e.

GD(G, {6,439, 0) = G{’(G,ﬂc,f’) = Go{c,f—t’|c,0)
G

With this approximation, Eq. (3) yields the result
of the WF theory, which reads as
~ 0
F' (6 Ry = MR )
G (o,u|o)
in Laplace domain,™ where # denotes the Laplace
variable. From Eq. (5) and the following property of the
conditional probability, J'Gn{r.f]r.))Pg‘_I(r(,)dr.-, =P,
one can obtain the expression for F(r,uleg) as fol-
lows:
= HF R (o)
F (G, n|eq}§,—0""—
uG (c.u
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In addition, the expression for the mean first

2007. 10t 51 X0 3

passage time, f,{(0). defined by 1, {(cleg)=
EdrF{o,l]eq)! =-aF(r, z¢|eq)"’€.-‘u|ﬁ= 5 can be obtained
trom small u expansinon of the R.H.S. of Eq. (6).
_;:(/', ileq) = 3 ' l—[u(}n(r, 11[1’)-"'}3?,](1‘)]}" as tollows:

=
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Note here that Go(o,-r-[o) is the same as Pfq(c) .
Comparison between #},.(cleg) given in Eq. (7)
and Brownian dynamics simulation results was
made in Ret. 3, which shows Eq. (7) works better
tor the case with smaller ¢ but the accuracy of Eq.
{7} decreases with the value of ¢. This is because
Eq. (7) does not take into account the sizeeffects
between the reactive beads or the ends of the Rouse
chain. In the Brownian dynamics simulation reported
in Ref. 3. only those Rouse chain with its initial
ETE distance R, greater than ¢ can contribute to the
simulation results, whereas, to Eq. (7). Rouse chain
with R, smaller than ¢ contribute as well. For the
latter reason, even for the Rouse chain composed of
only two or three beads for which the approxima-
tion given n Eq. (4) happens to be correct, Eq. (7)
does not vield the correct result.

To take mto account the excluded volume effects
neglected in Eq. (7). one can replace the propagator
G" for the case with free boundary by the propaga-
tor G in the presence of reflecting boundary at
R=o.

;
tyrrilOleq) = Ed %;:"3—1} (8)

Although the exact expression of G for Rouse
chain 1s not yet available in general case, we man-
age to obtain an approximate expression tor G" as
tollows:

o

N
S

Cate 1 . .
G A = 43‘\:\.09 Z
=N

PR @™ O
: it _-\T < )"n_l
J(L\e =L -

(F» ¥




where \’=‘i]-‘l R and G\—-J; Uis the
Kummer’s function of the second kind and the

eigenvalues.” % is determined by the tollowing
equation:
Chtl gl
).,.[:' — =.=]=0 10
- 12) (10)

Here, x,= 0 and %, is the smallest positive root and
A~ 1s the next smallest positive root and so on. In
Eq. (9. ¢(n is given by

| i 2
Z = Jexp(—};r,ff Dby
XX 4 (11)

=

\(\"- 1),
with %f being the k-th Rouse eigenvalue, 1.e.

R e X kT
%y = 4sin (2—(:\”_1)) {12)

Substituting Eq. (9) inte Eq. (8), we obtan the
mean tirst passage time as
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DISCUSSION AND CONCLUSION

In the present section, we compare the values cal-
culated by our method with those by the computer
simulation. For this, we use the parameter set used
in Ref. 3. The detailed simulation method and sim-
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ulation parameters also follow the paper. Thus, in
Tuble | we cite the values in the data table of the
paper without modifications. We also present our
results in Tuble 1. For the calculations, we use the
program Mathematica 4.0 and Compaq Visual For-
tran Compiler Version 6.6 with IMSL Library and
the Zhang and Zin's Parabolic Cylinder Function
Routine To enumerate the sum of the mtinite series
in Eq. (13), we directly calculate the sum of the tirst
5000 summands. The residual sum can be effi-
ciently estimated as the magnitude of the k-th term
in the series decreases with & following a power-
law at large 4. It S, denotes the k-th summand in
the series, i.e.

H;, -5y 2" _) y 7
;== 1 [arsee)™
J".L\’ — 21];._;;_ Wx 2 L )".\.'
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In S, can be fitted excellently to —a In &+c for &
greater than 5000. Given the fitted values of @ and ¢,
one can estimate » " S by EXPI) g -
which is approximately given by exp(¢)5001¥'{a-1).

Table 1 shows that the predictions of the present
theory 1s in a better agreement with the computer
simulation results than those of the previous WF
theory. This is because the effects of excluded vol-
ume between reactive units is taken into account in
the present theory.

CONCLUSION

In the present work, we improve the Wilemski-Fix-
man theory for intrachain reaciton dynamics of Rouse
chain by taking into account the excluded volume
eftects between reactive units in the Rouse chain.

Table 1. Compacison of the MFPT pradicted by the WE (heory. out theory, and simulation

N G o= J%_c } Simulation {95% contidence) WF Present Theorv
50 6.5 6.122 174£10) 205 194,21
1.0 Q.2430 110i3) 141 126.33
73 6.5 .1 41+20) 446 424,60
' 1.6 6.2 250+10) 326 204,82
100 .3 (L8660 6801£30) 778 741.95
1.0 6.1732 450 +20) 590 537.15
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