DOI QR코드

DOI QR Code

Structure and Magnetic Characterization of Core-Shell Fe@ZrO2 Nanoparticles Synthesized by Sol-Gel Process

  • Chaubey, Girija S. (Department of Chemistry, Kongju National University) ;
  • Kim, Jin-Kwon (Department of Chemistry, Kongju National University)
  • Published : 2007.12.20

Abstract

Highly crystalline, uniform Fe nanoparticles were successfully synthesized and encapsulated in zirconia shell using sol-gel process. Two different approaches have been employed for the coating of Fe nanoparticle with zirconia. The thickness of zirconia shell can be readily controlled by altering molar ratio of Fe nanoparticle core to zirconia precursor in the first case where as reaction time was found to be most effective parameter to controlled the shell thickness in the second method. The structure and magnetic properties of the ZrO2-coated Fe nanoparticles were studied. TEM and HRTEM images show a typical core/shell structure in which spherical α-iron crystal sized of ~25 nm is surrounded by amorphous ZrO2 coating layer. TGA study showed an evidence of weight loss of less than 2% over the temperature range of 50-500 °C. The nanoparticles are basically in ferromagnetic state and their magnetic properties depend strongly on annealing temperature. The thermal treatment carried out in as-prepared sample resulted in reduction of coercivity and an increase in saturation magnetization. X-ray diffraction experiments on the samples after annealing at 400-600 °C indicate that the size of the Fe@ZrO2 particles is increased slightly with increasing annealing temperature, indicating the ZrO2 coating layer is effective to interrupt growing of iron particle according to heat treatment.

Keywords

References

  1. Bradley, J. S. Cluster and Colloids; Schmid, G., Ed.; VCH: 1994
  2. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Science 2000, 287, 1989 https://doi.org/10.1126/science.287.5460.1989
  3. Jun, Y.; Jang, J.; Cheon, J. Bull. Korean Chem. Soc. 2006, 27, 965 https://doi.org/10.5012/bkcs.2006.27.7.961
  4. Alivisatos, A. P. Science 1996, 271, 933 https://doi.org/10.1126/science.271.5251.933
  5. Caruso, F. Adv. Mater. 2001, 13, 11 https://doi.org/10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N
  6. Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P. Chem. Commun. 1996, 731
  7. Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P. Langmuir 1996, 12, 4329
  8. Liu, Q.; Xu, Z.; Finch, J. A.; Egerton, R. Chem. Mater. 1998, 10, 3936 https://doi.org/10.1021/cm980370a
  9. Olsvik, O.; Popovic, T.; Skjerve, E.; Cudjoe, K. S.; Horns, E.; Ugelstad, J.; Uhl, M. Clin. Microbiol. Rev. 1994, 7, 43 https://doi.org/10.1128/CMR.7.1.43
  10. Wu, M.; Yang, Y. D.; Hui, S.; Xiao, T. D.; Ge, S.; Hines, W. A.; Budnick, J. I. J. Appl. Phy. 2002, 92, 491 https://doi.org/10.1063/1.1483393
  11. Pathmamnoharan, C.; Philipse, A. P. J. Colloid Interface Sci. 1998, 205, 340 https://doi.org/10.1006/jcis.1998.5589
  12. Klotz, M.; Ayral, A.; Guizard, C.; Menager, C.; Cabuil, V. J. Colloid Interface Sci. 1999, 220, 357 https://doi.org/10.1006/jcis.1999.6517
  13. Szabo, D. V.; Vollath, D. Adv. Mater. 1999, 11, 1313 https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1313::AID-ADMA1313>3.0.CO;2-2
  14. Ennas, E.; Mei, A.; Musinu, A.; Piccaluga, G.; Pinna, G.; Solinas, S. J. Non-Cryst. Solids 1998, 232-234, 587
  15. Tartaj, P.; Serna, C. J. J. Am. Chem. Soc. 2003, 125, 15754 https://doi.org/10.1021/ja0380594
  16. Bas, J. A.; Caleo, J. A.; Dougan, M. J. J. Magn. Magn. Mater. 2003, 254-255, 391
  17. Glavee, G. N.; Klabunde, K. J.; Sorensen, C. M.; Hadjipanayis, G. C. Inorg. Chem. 1995, 9, 28
  18. Cullity, B. D. Introduction to Magnetic Materials; Addison-Wesley: 1972
  19. Suslick, K. S.; Fang, M.; Hyeon, T. J. Am. Chem. Soc. 1996, 118, 11960 and references cited therein
  20. Wu, M.; Yang, Y. D.; Hui, S.; Xiao, T. D.; Ge, S.; Hines, W. A.; Budnick, J. I.; Yacaman, M. J. J. Appl. Phy. 2002, 92, 6809 https://doi.org/10.1063/1.1518757
  21. Chen, C.; Kitakami, O.; Shimada, Y. J. Appl. Phys. 1998, 84, 2181 https://doi.org/10.1063/1.368358
  22. Gangopadhyay, S.; Hadjipanayi, G. C.; Dale, B.; Sorensen, C. M.; Klabunde, K. J.; Papaefthymiou, V.; Kostika, A. Phys. Rev. 1992, B45, 9778
  23. Zhao, S.-Y.; Lee, D. K.; Kim, C. W.; Cha, H. G.; Kim, Y. H.; Kang, Y. S. Bull. Korean Chem. Soc. 2006, 27, 237 https://doi.org/10.5012/bkcs.2006.27.2.237

Cited by

  1. Multifunctional composite core–shell nanoparticles vol.3, pp.11, 2011, https://doi.org/10.1039/c1nr11000d
  2. Monitoring analgesic drug using sensing method based on nanocomposite vol.5, pp.4, 2015, https://doi.org/10.1039/C4RA11255E
  3. Control of crystallite orientation and size in Fe and FeCo nanoneedles vol.23, pp.22, 2012, https://doi.org/10.1088/0957-4484/23/22/225601
  4. core-shell nanoparticles vol.7, pp.2, 2015, https://doi.org/10.1063/1.4915312
  5. Design of a new nanostructure comprising mesoporous ZrO2 shell and magnetite core (Fe3O4@mZrO2) and study of its phosphate ion separation efficiency vol.20, pp.21, 2010, https://doi.org/10.1039/b925379c
  6. Mossbauer spectroscopy study of Fe@ZrO2 nanocomposites formation by MA SHS technology vol.239, pp.1, 2018, https://doi.org/10.1007/s10751-018-1490-6
  7. Synthesis, characterization and application of magnetic-zirconia nanocomposites vol.355, pp.16, 2007, https://doi.org/10.1016/j.jnoncrysol.2009.04.030
  8. Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles vol.553, pp.None, 2007, https://doi.org/10.1016/j.physrep.2014.09.007
  9. Sol–gel method as a way of carbonyl iron powder surface modification for interaction improvement vol.226, pp.None, 2007, https://doi.org/10.1016/j.jssc.2015.03.002
  10. Direct Conversion of Sugars and Ethyl Levulinate into γ-Valerolactone with Superparamagnetic Acid–Base Bifunctional ZrFeOx Nanocatalysts vol.4, pp.1, 2016, https://doi.org/10.1021/acssuschemeng.5b01480
  11. Reduced surface spin disorder in ZrO2 coated γ-Fe2O3 nanoparticles vol.284, pp.None, 2007, https://doi.org/10.1016/j.ssc.2018.09.010
  12. A comparative study on the microwave absorption properties of core-single-shell, core-double-shell and yolk-shell CIP/ceramic composite microparticles vol.547, pp.None, 2007, https://doi.org/10.1016/j.jmmm.2021.168959