DOI QR코드

DOI QR Code

Highly Selective Fluorescent Signaling for Al3+ in Bispyrenyl Polyether

  • Kim, Hyun-Jung (Department of Chemistry, Institute of Nanosensor & Biotechnology, Dankook University) ;
  • Kim, Su-Ho (Department of Chemistry, Institute of Nanosensor & Biotechnology, Dankook University) ;
  • Quang, Duong Tuan (Department of Chemistry, Institute of Nanosensor & Biotechnology, Dankook University) ;
  • Kim, Ja-Hyung (Department of Chemistry, Institute of Nanosensor & Biotechnology, Dankook University) ;
  • Suh, Il-Hwan (Department of Chemistry, Korea University) ;
  • Kim, Jong-Seung (Department of Chemistry, Institute of Nanosensor & Biotechnology, Dankook University)
  • Published : 2007.05.20

Abstract

A series of bispyrenyl-polyether have been synthesized and investigated as a fluorescent chemosensor for metal ions. The results showed that bispyrenyl-polyether system is selective towards Al3+ ion over other ions tested. In free ligand, excited at 343 nm, it displays a strong excimer emission at around 475 nm with a weak monomer emission at 375 nm. A ratiometry of monomer (375 nm) increase and excimer (475 nm) quenching was shown only when Al3+ ion is bound to ligand, because two facing pyrene groups form a less efficient overlap of π?π stacking compared with that of free ligand.

Keywords

References

  1. Chemosensors of Ion and Molecule Recognition, NATO ASI series; Desvergne, J. P.; Czarnik, A. W., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 1997; p 492
  2. de Silva, A. P.; Gunaratne, H. Q.; Gunnlaugsson, N. T. A.; Huxley, T. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515 https://doi.org/10.1021/cr960386p
  3. Prodi, L.; Montalti, M.; Zaccheroni, N.; Bradshaw, J. S.; Izatt, R. M.; Savage, P. B. Tetrahedron Lett. 2001, 42, 2941 https://doi.org/10.1016/S0040-4039(01)00330-6
  4. Rurack, K.; Kollmannsberger, M.; Resch-Genger, U.; Daub, J. J. Am. Chem. Soc. 2000, 122, 968
  5. Xie, X. S. Acc. Chem. Res. 1996, 29, 598 https://doi.org/10.1021/ar950246m
  6. Goodwin, P. M.; Ambrose, W. P.; Keller, R. A. Acc. Chem. Res. 1996, 29, 607 https://doi.org/10.1021/ar950250y
  7. Orrit, M.; Bernard, J. Phys. Rev. Lett. 1990, 65, 2716 https://doi.org/10.1103/PhysRevLett.65.2716
  8. Mets, U.; Rigler, R. J. Fluoresc. 1994, 4, 259 https://doi.org/10.1007/BF01878461
  9. Moerner, W. E.; Basche, T. Angew. Chem., Int. Ed. Engl. 1993, 32, 457 https://doi.org/10.1002/anie.199304573
  10. Moerner, W. E. Acc. Chem. Res. 1996, 29, 563 https://doi.org/10.1021/ar950245u
  11. Yeung, E. S. Acc. Chem. Res. 1994, 27, 209
  12. William, R. J. P. Coord. Chem. Rev. 2002, 228, 93 https://doi.org/10.1016/S0010-8545(02)00072-3
  13. Yokel, R. A. Neurotoxicology 2000, 21, 813
  14. Lee, Y. O.; Choi, Y. H.; Kim, J. S. Bull. Korean Chem. Soc. 2007, 28, 151 https://doi.org/10.5012/bkcs.2007.28.1.151
  15. Needleman, H. L. Human Lead Exposure; CRC Press: Boca Raton, FL, 1992
  16. Rifai, N.; Cohen, G.; Wolf, M.; Cohen, L.; Faser, C.; Savory, J.; DePalma, L. Ther. Drug Monit. 1993, 15, 71 https://doi.org/10.1097/00007691-199304000-00001
  17. Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3 https://doi.org/10.1016/S0010-8545(00)00246-0
  18. Birks, J. B. Photophysics of Aromatic Molecules; Wiley- Interscience: London, 1970
  19. Lee, Y. O.; Lee, J. Y.; Quang, D. T.; Lee, M. H.; Kim, J. S. Bull. Korean Chem. Soc. 2006, 27, 1469 https://doi.org/10.5012/bkcs.2006.27.9.1469
  20. Park, H. R.; Oh, C.-H.; Lee, H.-C.; Choi, J. G.; Jung, B.-I.; Bark, K.-M. Bull. Korean Chem. Soc. 2006, 27(12), 2002 https://doi.org/10.5012/bkcs.2006.27.12.2002
  21. Broan, C. J. Chem. Commun. 1996, 699
  22. Lewis, F. D.; Zhang, Y.; Letsinger, R. L. J. Am. Chem. Soc. 1997, 119, 5451 https://doi.org/10.1021/ja9641214
  23. Lou, J.; Hatton, T. A.; Laibinis, P. E. Anal. Chem. 1997, 69, 1262 https://doi.org/10.1021/ac960745g
  24. Reis e Sousa, A. T.; Castanheira, E. M. S.; Fedorov, A.; Martinho, J. M. G. J. Phys. Chem. A 1998, 102, 6406 https://doi.org/10.1021/jp973258t
  25. Suzuki, Y.; Morozumi, T.; Nakamura, H.; Shimomura, M.; Hayashita, T.; Bartsch, R. A. J. Phys. Chem. B 1998, 102, 7910 https://doi.org/10.1021/jp981567t
  26. Nohta, H.; Satozono, H.; Koiso, K.; Yoshida, H.; Ishida, J.; Yamaguchi, M. Anal. Chem. 2000, 72, 4199 https://doi.org/10.1021/ac0002588
  27. Okamoto, A.; Ichiba, T.; Saito, I. J. Am. Chem. Soc. 2004, 126, 8364 https://doi.org/10.1021/ja049061d
  28. Casnati, A.; Pochini, A.; Ungaro, R.; Ugozzoli, F.; Arnaud-Neu, F.; Fanni, S.; Schwing, M. J.; Egberink, R. J. M.; de Jong, F.; Reinhoudt, D. N. J. Am. Chem. Soc. 1995, 117, 2767
  29. Kim, J. S.; Lee, W. K.; No, K. H.; Asfari, Z.; Vicens, J. Tetrahedron Lett. 2000, 41, 3345 https://doi.org/10.1016/S0040-4039(00)00382-8
  30. Koh, K. H.; Araki, K.; Shinkai, S.; Asfari, Z.; Vicens, J. Tetrahedron Lett. 1995, 36, 6095 https://doi.org/10.1016/0040-4039(95)01212-Z
  31. Kim, J. S.; Suh, I. H.; Kim, J. K.; Cho, M. J. Chem. Soc., Perkin Trans. 1 1998, 2307
  32. Winnik, F. M. Chem. Rev. 1993, 93, 587 https://doi.org/10.1021/cr00018a001
  33. Association constants were obtained using the computer program ENZFITTER, available from Elsevier-BIOSOFT, 68 Hills Road, Cambridge CB2 1LA, U.K
  34. Connors, K. A. Binding Constants; Wiley: New York, 1987
  35. Kim, S. K.; Lee, S. H.; Lee, J. Y.; Lee, J. Y.; Bartsch, R. A.; Kim, J. S. J. Am. Chem. Soc. 2004, 126, 16499 https://doi.org/10.1021/ja045689c

Cited by

  1. Based on a Novel Photoinduced Electron Transfer Approach vol.13, pp.19, 2011, https://doi.org/10.1021/ol202054v
  2. Ion and Proton vol.14, pp.13, 2012, https://doi.org/10.1021/ol301390g
  3. Fluorescent probes for selective determination of trace level Al3+: recent developments and future prospects vol.5, pp.22, 2013, https://doi.org/10.1039/c3ay40982a
  4. Multifunctional Fe3O4 nanoparticles for highly sensitive detection and removal of Al(iii) in aqueous solution vol.5, pp.4, 2013, https://doi.org/10.1039/c2nr33200k
  5. Fluorescence Spectrometric Determination of Aluminum(III) Ion in Water Using 4-Chloro-2-phenyliminomethylphenol vol.29, pp.1, 2008, https://doi.org/10.5012/bkcs.2008.29.1.245
  6. Azetidine-based Anthracenyl Chemosensor for Cu(II) Ion in Aqueous Media vol.29, pp.10, 2008, https://doi.org/10.5012/bkcs.2008.29.10.2033
  7. Pyrene Appended Hg2+-selective Fluoroionophore Based upon Diaza-Crown Ether vol.29, pp.3, 2007, https://doi.org/10.5012/bkcs.2008.29.3.567
  8. Cooperative Anions Binding with Nitrophenyl Thiourea Derivative vol.29, pp.3, 2007, https://doi.org/10.5012/bkcs.2008.29.3.663
  9. BODIPY Appended Crown Ethers: Selective Fluorescence Changes for Hg2+ Binding vol.29, pp.9, 2007, https://doi.org/10.5012/bkcs.2008.29.9.1831
  10. Thermosensitive Block Copolymers Consisting of Poly(N-isopropylacrylamide) and Star Shape Oligo(ethylene oxide) vol.30, pp.7, 2007, https://doi.org/10.5012/bkcs.2009.30.7.1521
  11. Iminocoumarin-based Hg(II) Ion Probe vol.31, pp.1, 2010, https://doi.org/10.5012/bkcs.2010.31.01.230
  12. Multi-addressable molecular switches based on a new diarylethene salicylal Schiff base derivative vol.1, pp.31, 2007, https://doi.org/10.1039/c3tc30804a
  13. Selective fluorescence sensor for Al3+ and Pb2+ in physiological condition by a benzene based tripodal receptor vol.54, pp.8, 2007, https://doi.org/10.1016/j.tetlet.2012.11.114
  14. A seleno-pyrene selective probe for Hg2+ detection in either aqueous or aprotic systems vol.239, pp.None, 2007, https://doi.org/10.1016/j.snb.2016.08.014
  15. Theoretical Design of Near-Infrared Al3+ Fluorescent Probes Based on Salicylaldehyde Acylhydrazone Schiff Base Derivatives vol.58, pp.19, 2007, https://doi.org/10.1021/acs.inorgchem.9b01335