DOI QR코드

DOI QR Code

Attractive Sulfur...π Interaction between Fluorinated Dimethyl Sulfur (FDMS) and Benzene

  • Yan, Shihai (Department of Chemistry, Sungkyunkwan University) ;
  • Lee, Sang-Joo (Center for Computational Biology and Bioinformatics, Korea Institute of Science and Technology Information) ;
  • Kang, Sun-Woo (Department of Chemistry, Sungkyunkwan University) ;
  • Choi, Kwang-Hyun (Department of Chemistry, Sungkyunkwan University) ;
  • Rhee, Soon-Ki (Department of Chemistry, Chonnam National University) ;
  • Lee, Jin-Yong (Department of Chemistry, Sungkyunkwan University)
  • Published : 2007.06.20

Abstract

The benzene complexes with dimethyl sulfur (DMS) and fluorinated DMS (FDMS) have been investigated using ab initio calculations. The natural bond orbital (NBO) charge population on S atom varies remarkably for different conformations of DMS and FDMS, which determines the possible binding modes for their benzene complexes. The electronegative substituent at the methyl group of DMS causes a significant change in the molecular electrostatic potential around the sulfur atom and changes the interaction mode with aromatic ring. It was found that the sulfur…π interaction mode does not occur in the DMS-benzene complex, while it does in the FDMS-benzene complex. Both B3LYP and MP2 methods provide reliable structures, while the interaction energy obtained by B3LYP is unreliable.

Keywords

References

  1. Dill, K. A. Biochemistry 1990, 29, 7133 https://doi.org/10.1021/bi00483a001
  2. Myung, P.-K.; Park, K.-Y.; Sung, N.-D. Bull. Kor. Chem. Soc. 2005, 26, 1941 https://doi.org/10.5012/bkcs.2005.26.12.1941
  3. Domene, C.; Bond, P. J.; Deol, S. S.; Sansom, M. S. P. J. Am. Chem. Soc. 2003, 125, 14966 https://doi.org/10.1021/ja0364874
  4. Bujalowski, W. Chem. Rev. 2006, 106, 556 https://doi.org/10.1021/cr040462l
  5. Lee. J.-Y.; Kim, Y. Bull. Kor. Chem. Soc. 2005, 26, 1695 https://doi.org/10.5012/bkcs.2005.26.11.1695
  6. Jeong, M. S.; Jang, S. B. Bull. Kor. Chem. Soc. 2006, 27, 87 https://doi.org/10.5012/bkcs.2006.27.1.087
  7. Viguera, A. R.; Serrano, L. Biochemistry 1995, 34, 8771 https://doi.org/10.1021/bi00027a028
  8. Morgan, R. S.; Tatsch, C. E.; Gushard, R. H.; McAdon, J. M.; Warme, P. K. Int. J. Pettide Protein Res. 1978, 11, 209
  9. Morgan, R. S.; McAdon, J. M. Int. J. Pettide Protein Res. 1980, 15, 177
  10. Rodner, B. L.; Jackman, L. M.; Morgan, R. S. Biochem. Biophys. Res. Commun. 1980, 94, 807 https://doi.org/10.1016/0006-291X(80)91306-6
  11. Shortle, D.; Meeker, A. K. Proteins Struct. Funct. Genet. 1986, 1, 81 https://doi.org/10.1002/prot.340010113
  12. Lebel, M.; Sugg, E. E.; Hruby, V. J. Int. J. Peptide Protein Res. 1987, 29, 40 https://doi.org/10.1111/j.1399-3011.1987.tb02227.x
  13. Shortle, D.; Meeker, A. K.; Freire, E. Biochemistry 1988, 27, 4761 https://doi.org/10.1021/bi00413a027
  14. Shortle, D.; Stites, W. E.; Meeker, A. K. Biochemistry 1990, 29, 8033 https://doi.org/10.1021/bi00487a007
  15. Yamaoutsu, N.; Moriguchi, I.; Hirono, S. Biochim. Biophys. Acta 1993, 1203, 243 https://doi.org/10.1016/0167-4838(93)90090-E
  16. Yamaoutsu, N.; Moriguchi, I.; Kollman, P. A.; Hirono, S. Biochim. Biophys. Acta 1993, 1163, 81 https://doi.org/10.1016/0167-4838(93)90282-V
  17. Kimura, T.; Furukawa, N. Tetrahedron Lett. 1995, 36, 1079 https://doi.org/10.1016/0040-4039(94)02461-J
  18. Viguera, A. R.; Serrano, L. Biochemistry 1995, 34, 8771 https://doi.org/10.1021/bi00027a028
  19. Spencer, D. S.; Stites, W. E. J. Mol. Biol. 1996, 257, 497 https://doi.org/10.1006/jmbi.1996.0180
  20. Gauss, J.; Stanton, J. F. J. Phys. Chem. A 2000, 104, 2865 https://doi.org/10.1021/jp994408y
  21. Nemethy, G.; Scheraga, H. A. Biochem. Biophys. Res. Commun. 1981, 98, 482 https://doi.org/10.1016/0006-291X(81)90865-2
  22. Cheney, B. V.; Schulz, M. W.; Cheney, J. Biochim. Biophys. Actat. 1989, 996, 116 https://doi.org/10.1016/0167-4838(89)90103-9
  23. Munoz, V.; Serrano, L. Proteins Struct. Funct. Genet. 1994, 20, 301 https://doi.org/10.1002/prot.340200403
  24. Munoz, V.; Serrano, L. J. Mol. Biol. 1995, 245, 275 https://doi.org/10.1006/jmbi.1994.0023
  25. Pranata, J. Bioorg. Chem. 1997, 25, 213 https://doi.org/10.1006/bioo.1997.1064
  26. Duan, G. L.; Smith, V. H., Jr.; Weaver, D. F. Mol. Phys. 2001, 99, 1689 https://doi.org/10.1080/00268970110063917
  27. Tauer, T. P.; Derrick, M. E.; Sherrill, C. D. J. Phys. Chem. A 2005, 109, 191 https://doi.org/10.1021/jp046778e
  28. Reid, K. S. C.; Lindley, P. F.; Thornton, J. M. FEBS Lett. 1985, 190, 209 https://doi.org/10.1016/0014-5793(85)81285-0
  29. Allen, F. H.; Kennard, O. Chem. Design Auto News 1993, 8, 1 & 31
  30. Zauhar, R. J.; Colbert, C. L.; Morgan, R. S.; Welshm, W. J. Biopolymers 2000, 53, 233 https://doi.org/10.1002/(SICI)1097-0282(200003)53:3<233::AID-BIP3>3.0.CO;2-4
  31. Allen, F. H. Acta Cyrstallogr. B 2002, 58, 380 https://doi.org/10.1107/S0108768102003890
  32. Calvert, J. G.; Pitts, J. N., Jr. Photochemistry; Wiley: New York, 1966
  33. Thompson, S. D.; Carrol, D. G.; Watson, F.; O'Donnell, M.; McGlynn, S. P. J. Chem. Phys. 1966, 45, 1367 https://doi.org/10.1063/1.1727769
  34. Charlson, R. J.; Lovelock, J. E.; Andreae, M. O.; Warren, S. G. Nature 1987, 326, 655 https://doi.org/10.1038/326655a0
  35. Bates, T. S.; Lamb, B. K.; Guenther, A.; Dignon, J.; Stoiber, R. E. J. Atmos. Chem. 1992, 14, 315 https://doi.org/10.1007/BF00115242
  36. Manaa, M. R.; Yarkony, D. R. J. Am. Chem. Soc. 1994, 116, 11444 https://doi.org/10.1021/ja00104a025
  37. Haya, B. M.; Quintana, P.; Banares, L.; Samartzis, P.; Smith, D. J.; Kitsopoulos, T. N. J. Chem. Phys. 2001, 114, 4450 https://doi.org/10.1063/1.1346644
  38. Mousavipour, S. H.; Emad, L.; Fakhraee, S. J. Phys. Chem. A 2002, 106, 2489 https://doi.org/10.1021/jp010990q
  39. Bernstein, F. C.; Koetzle, T. F.; Williams, G. J. B.; Meyer, E. F.; Brice, M. D.; Rodgers, J. R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. J. Mol. Biol. 1977, 112, 535 https://doi.org/10.1016/S0022-2836(77)80200-3
  40. Solimannejad, M.; Pejov, L. J. Phys. Chem. A 2005, 109, 825 https://doi.org/10.1021/jp047323s
  41. Kim, K. S.; Tarakeshwar, P.; Lee, J. Y. Chem. Rev. 2000, 100, 4145 https://doi.org/10.1021/cr990051i
  42. Vaupel, S.; Brutschy, S.; Tarakeshwar, P.; Kim, K. S. J. Am. Chem. Soc. 2006, 128, 5416 https://doi.org/10.1021/ja056454j
  43. Lee, E. C.; Hong, B. H.; Lee, J. Y.; Kim, J. C.; Kim, D.; Kim, Y.; Tarakeshwar, P.; Kim, K. S. J. Am. Chem. Soc. 2005, 127, 4530 https://doi.org/10.1021/ja037454r
  44. Tarakeshwar, P.; Choi, H. S.; Kim, K. S. J. Am. Chem. Soc. 2001, 123, 3323 https://doi.org/10.1021/ja0013531
  45. Hong, B. H.; Lee, J. Y.; Cho, S. J.; Yun, S.; Kim, K. S. J. Org. Chem. 1999, 64, 5661 https://doi.org/10.1021/jo990755s
  46. Tarakeshwar, P.; Lee, S. J.; Lee, J. Y.; Kim, K. S. J. Chem. Phys. 1998, 108, 7217 https://doi.org/10.1063/1.476139
  47. Ren, T.; Jin, Y.; Kim, K. S.; Kim, D. H. J. Biomol. Struct. Dynamics 1997, 15, 401 https://doi.org/10.1080/07391102.1997.10508202
  48. Gotch, A. J.; Zwier, T. S. J. Chem. Phys. 1992, 95, 3388
  49. Augspurger, J. D.; Dykstra, C. E.; Zwier, T. S. J. Phys. Chem. 1992, 96, 7252 https://doi.org/10.1021/j100197a023
  50. Gutowsky, H. S.; Emilsson, T.; Arunan, E. J. Chem. Phys. 1993, 99, 4883 https://doi.org/10.1063/1.466038
  51. Arunan, E.; Emilsson, T.; Gutowsky, H. S. J. Chem. Phys. 1994, 101, 861 https://doi.org/10.1063/1.467738
  52. Arunan, E.; Emilsson, T.; Gutowsky, H. S.; Fraser, G. T.; Oliveira, G. de; Dykstra, C. E. J. Chem. Phys. 2002, 117, 9766 https://doi.org/10.1063/1.1518999
  53. Lee, J. Y.; Kim, J.; Lee, H. M.; Tarakeshwar, P.; Kim, K. S. J. Chem. Phys. 2000, 113, 6160 https://doi.org/10.1063/1.1308553
  54. Tarakeshwar, P.; Kim, K. S.; Brutschy, B. J. Chem. Phys. 2000, 112, 1769 https://doi.org/10.1063/1.480774
  55. Tarakeshwar, P.; Choi, H. S.; Lee, S. J.; Lee, J. Y.; Kim, K. S.; Ha, T.-K.; Jang, J. H.; Lee, J. G.; Lee, H. J. Chem. Phys. 1999, 111, 5838
  56. Kim, K. S.; Lee, J. Y.; Choi, H. S.; Kim, J.; Jang, J. H. Chem. Phys. Lett. 1997, 265, 497 https://doi.org/10.1016/S0009-2614(96)01473-X
  57. Frisch, M. J. et al. Gaussian 03, Revision A1; Gaussian Inc.: Pittsburgh, PA, 2003
  58. Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553 https://doi.org/10.1080/00268977000101561
  59. Mousavipour, S. H.; Emad, L.; Fakhraee, S. J. Phys. Chem. A 2002, 106, 2489 https://doi.org/10.1021/jp010990q
  60. Handbook of Chemistry and Physics, 80th Ed.; Lide, D. R., Ed.; CRC Press: Boca Raton, 1999-2000
  61. Saigal, S.; Pranata, J. Bioorg. Chem. 1997, 25, 11 https://doi.org/10.1006/bioo.1996.1050

Cited by

  1. Phosphole modified pentathienoacene: Synthesis, electronic properties and self-assembly vol.10, pp.7, 2012, https://doi.org/10.1039/c1ob06584j
  2. Theoretical studies of the effect of electron-withdrawing dicyanovinyl group on the electronic and charge-transport properties of fluorene-thiophene oligomers vol.131, pp.3, 2012, https://doi.org/10.1007/s00214-012-1121-2
  3. Stabilizing effect of electrostatic vs. aromatic interactions in diproline nucleated peptide β-hairpins vol.15, pp.37, 2013, https://doi.org/10.1039/c3cp52770k
  4. Experimental and theoretical analysis of lp⋯π intermolecular interactions in derivatives of 1,2,4-triazoles vol.16, pp.9, 2014, https://doi.org/10.1039/C3CE42286K
  5. Theoretical insight into sulfur–aromatic interactions with extension to D2 receptor activation mechanism vol.26, pp.4, 2015, https://doi.org/10.1007/s11224-015-0574-z
  6. On the properties of S⋯O and S⋯π noncovalent interactions: the analysis of geometry, interaction energy and electron density vol.39, pp.3, 2015, https://doi.org/10.1039/C4NJ01420K
  7. Counter-ion control of structure in uranyl ion complexes with 2,5-thiophenedicarboxylate vol.18, pp.9, 2016, https://doi.org/10.1039/C5CE02294K
  8. Sulfur-Aromatic Interactions: Modeling Cysteine and Methionine Binding to Tyrosinate and Histidinium Ions to Assess Their Influence on Protein Electron Transfer vol.56, pp.9-10, 2016, https://doi.org/10.1002/ijch.201600047
  9. Pivotal Neighboring-Group Participation in Substitution versus Elimination Reactions - Computational Evidence for Ion Pairs in the Thionation of Alcohols with Lawesson's Reagent vol.2017, pp.14, 2017, https://doi.org/10.1002/ejoc.201700127
  10. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  11. Intermolecular S⋯π interactions in crystalline sulfanyl-triazine derivatives vol.33, pp.4, 2007, https://doi.org/10.1039/b818344a
  12. Aromatische Ringe in chemischer und biologischer Erkennung: Energien und Strukturen vol.123, pp.21, 2011, https://doi.org/10.1002/ange.201007560
  13. Aromatic Rings in Chemical and Biological Recognition: Energetics and Structures vol.50, pp.21, 2011, https://doi.org/10.1002/anie.201007560
  14. Modeling Protein S-Aromatic Motifs Reveals Their Structural and Redox Flexibility vol.122, pp.14, 2018, https://doi.org/10.1021/acs.jpcb.8b00089