DOI QR코드

DOI QR Code

Visible Light Driven ZnFe2Ta2O9 Catalyzed Decomposition of H2S for Solar Hydrogen Production

  • Subramanian, Esakkiappan (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology) ;
  • Baeg, Jin-Ook (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology) ;
  • Kale, Bharat B. (Center for Materials for Electronics Technology (C-MET)) ;
  • Lee, Sang-Mi (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology) ;
  • Moon, Sang-Jin (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology) ;
  • Kong, Ki-Jeong (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology)
  • Published : 2007.11.20

Abstract

Tantalum-containing metal oxides, well known for their efficiency in water splitting and H2 production, have never been used in visible light driven photodecomposition of H2S and H2 production. The present work is an attempt in this direction and investigates their efficiency. A mixed metal oxide, ZnFe2Ta2O9, with the inclusion of Fe2O3 to impart color, was prepared by the conventional ceramic route in single- and double-calcinations (represented as ZnFe2Ta2O9-SC and ZnFe2Ta2O9-DC respectively). The XRD characterization shows that both have identical patterns and reveals tetragonal structure to a major extent and a minor contribution of orthorhombic crystalline system. The UV-visible diffuse reflection spectra demonstrate the intense, coherent and wide absorption of visible light by both the catalysts, with absorption edge at 650 nm, giving rise to a band gap of 1.9 eV. Between the two catalysts, however, ZnFe2Ta2O9-DC has greater absorption in almost the entire wavelength region, which accounts for its strong brown coloration than ZnFe2Ta2O9-SC when viewed by the naked eye. In photocatalysis, both catalysts decompose H2S under visible light irradiation (λ ≥ 420 nm) and produce solar H2 at a much higher rate than previously reported catalysts. Nevertheless, ZnFe2Ta2O9-DC distinguishes itself from ZnFe2Ta2O9-SC by exhibiting a higher efficiency because of its greater light absorption. Altogether, the tantalum-containing mixed metal oxide proves its efficient catalytic role in H2S decomposition and H2 production process also.

Keywords

References

  1. Nowotny, J.; Sorrell, C.; Sheppard, L. R.; Bak, T. Int. J. Hydrogen Energy 2005, 30, 521 https://doi.org/10.1016/j.ijhydene.2004.06.012
  2. Fujishima, A.; Honda, K. Nature 1972, 238, 37 https://doi.org/10.1038/238037a0
  3. Choi, H. J.; Kim, J. S.; Kang, M. Bull. Korean Chem. Soc. 2007, 28, 581 https://doi.org/10.5012/bkcs.2007.28.4.581
  4. Kim, H. J.; Lu, L.; Kim, J. H.; Lee, C. H.; Hyeon, T.; Choi, W.; Lee, H. I. Bull. Korean Chem. Soc. 2001, 22, 1371
  5. Kudo, A. Int. J. Hydrogen Energy 2006, 31, 197 https://doi.org/10.1016/j.ijhydene.2005.04.050
  6. Kale, B. B.; Baeg, J. O.; Lee, S. M.; Chang, H.; Moon, S. J.; Lee, C. W. Adv. Funct. Mater. 2006, 16, 1349 https://doi.org/10.1002/adfm.200500525
  7. Bessekhouad, Y.; Mohammedi, M.; Trari, M. Sol. Energy Mater. Sol. Cells 2002, 73, 339 https://doi.org/10.1016/S0927-0248(01)00218-5
  8. Bessekhouad, Y.; Trari, M.; Doumerc, J. P. Int. J. Hydrogen Energy 2003, 28, 43 https://doi.org/10.1016/S0360-3199(02)00023-X
  9. Trari, M.; Bouguelia, A.; Bessekhouad, Y. Solar Energy Mater. Solar Cells 2006, 90, 190 https://doi.org/10.1016/j.solmat.2005.03.003
  10. Saadi, S.; Bouguelia, A.; Trari, M. Solar Energy 2006, 80, 272 https://doi.org/10.1016/j.solener.2005.02.018
  11. Kale, B. B.; Baeg, J. O.; Yoo, J. S.; Lee, S. M.; Lee, C. W.; Moon, S. J.; Chang, H. Can. J. Chem. 2005, 83, 527 https://doi.org/10.1139/v05-036
  12. Kanade, K. G.; Kale, B. B.; Baeg, J. O.; Lee, S. M.; Lee, C. W.; Moon, S. J.; Chang, H. Mater. Chem. Phys. 2007, 102, 98 https://doi.org/10.1016/j.matchemphys.2006.11.012
  13. Hitoki, G.; Takata, T.; Kondo, J. N.; Michikazu, H.; Kobayashi, H.; Domen, K. Chem. Commun. 2002, 1698
  14. Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Nature 2001, 414, 625 https://doi.org/10.1038/414625a

Cited by

  1. Ecofriendly hydrogen production from abundant hydrogen sulfide using solar light-driven hierarchical nanostructured ZnIn2S4 photocatalyst vol.13, pp.9, 2011, https://doi.org/10.1039/c1gc15515f
  2. An eco-friendly, highly stable and efficient nanostructured p-type N-doped ZnO photocatalyst for environmentally benign solar hydrogen production vol.14, pp.10, 2012, https://doi.org/10.1039/c2gc35519a
  3. S splitting vol.41, pp.10, 2017, https://doi.org/10.1039/C6NJ04012H
  4. Development and potential of new generation photocatalytic systems for air pollution abatement: an overview vol.4, pp.4, 2009, https://doi.org/10.1002/apj.321
  5. Formation of Layered Bi5Ti3FeO15 Perovskite in Bi2O3-TiO2-Fe2O3 Containing System vol.30, pp.12, 2007, https://doi.org/10.5012/bkcs.2009.30.12.3011
  6. Energy Band Structure and Photocatalytic Property of Fe-doped Zn2TiO4 Material vol.30, pp.12, 2007, https://doi.org/10.5012/bkcs.2009.30.12.3021
  7. Synthesis of Nanocrystalline ZnFe2O4 by Polymerized Complex Method for its Visible Light Photocatalytic Application: An Efficient Photo-oxidant vol.30, pp.8, 2007, https://doi.org/10.5012/bkcs.2009.30.8.1738